Go to journal homepage

Issues

 / 

2025

 / 

vol. 23 / 

issue 2

 



Download the full version of the article (in PDF format)

F. M. BUKHANKO

Donetsk Institute for Physics and Engineering named after O. O. Galkin, N.A.S. of Ukraine, 46, Nauky Ave., UA-03028 Kyiv, Ukraine

Creating of Bounded Majorana Pairs in Superconducting Net of Quantum Nanowires in SmMnO3+δ

423–435 (2025)

PACS numbers: 73.63.Nm, 74.78.Na, 75.30.Fv, 75.47.Lx, 75.60.Ej, 81.07.Vb, 85.35.Be

In this work, the formation of a superconducting network of quantum nanowires in SmMnO3+δ manganites in two hidden topological states CSL1 and CSL2 of a chiral quantum spin liquid is experimentally studied. As believed, the states of bound pairs of Majorana fermions are trapped at the two ends of the quantum nanowire. The formation of nanofragments of 1D coupled charge and spin densities' waves with wave vectors q1||a and q2||b as regards directions in the crystal lattice within the magnetic fields H ≥ 100 Oe indicates formation in ab planes of 2D quantum-nanowires' net. Within the weak magnetic fields H = 100 Oe, 350 Oe and 1 kOe, the continuous spectrum of the thermal excitations of bounded Majorana pairs in SmMnO3+δ in temperature interval of 4.2–12 K is divided into two low-energy Landau zones with numbers n = 1 and n = 2 with two specific features of magnetization M(T) in the shape of alternating double peaks and truncated Dirac cones.

KEY WORDS: Majorana and Dirac fermions, alternating double peaks and truncated Dirac cones, chiral quantum spin liquid

DOI:  https://doi.org/10.15407/nnn.23.02.0423

REFERENCES
  1. N. Read and D. Green, Phys. Rev. B, 61, Iss. 15: 10267 (2000); https://doi.org/10.1103/PhysRevB.61.10267
  2. J. D. Sau, R. M. Lutchyn, S. Tewari, and S. Das Sarma, Phys. Rev. Lett., 104, Iss. 4: 040502 (2010); https://doi.org/10.1103/PhysRevLett.104.040502
  3. J. D. Sau, S. R. Tewari, R. M. Lutchyn, T. D. Stanescu, and S. Das Sarma, Phys. Rev. B, 82, Iss. 21: 214509 (2010); https://doi.org/10.1103/PhysRevB.82.214509
  4. M. Leijnse and K. Flensberg, arXiv:1107.5703v2 [cond-mat.supr-con] 30 Nov 2011.
  5. Y. Oreg, G. Refael, and F. V. Oppen, Phys. Rev. Lett., 105, Iss. 17: 177002 (2010); https://doi.org/10.1103/PhysRevLett.105.177002
  6. S. Tewari and J. D. Sau, Phys. Rev. Lett., 109, Iss. 15: 150408 (2012); https://doi.org/10.1103/PhysRevLett.109.150408
  7. J. D. Sau, S. Tewari, and S. Das Sarma, arXiv:1111.2054v3 [cond-mat.supr-con] 27 Feb 2012.
  8. T. P. Choy, J. M. Edge, J. M. Akhmerov, and C. W. J. Beenakker, arXiv:1108.0419v1 [cond-mat.mes-hall] 1 Aug 2011.
  9. I. Martin and A. F. Morpurgo, arXiv:1110.5637v2 [cond-mat.mes-hall] 29 Mar 2012.
  10. W. DeGottardi and D. Sen, arXiv:1208.0015v1 [cond-mat.str-el] 31 Jul 2012.
  11. F. Wilczek, Nature Phys., 5, Iss. 5: 614 (2009); https://doi.org/10.1038/nphys1380
  12. K. Pakrouski, M. R. Peterson, T. Jolicoeur, V. W. Scarola, C. Nayak, and M. Troyer, Phys. Rev. X, 5, Iss. 4: 021004 (2015); doi:10.1103/PhysRevX.5.021004
  13. A. Kitaev, Ann. Phys., 303, Iss. 1: 2 (2003); https://doi.org/10.1016/S0003-4916(02)00018-0
  14. C. Nayak, S. H. Simon, A. Stern, M. Freedman, and S. Das Sarma, Rev. Mod. Phys., 80, Iss. 3: 1083 (2008); https://doi.org/10.1103/RevModPhys.80.1083
  15. J. Alicea, Y. Oreg, G. Refael, F. von Oppen, and M. P. A. Fisher, Nature Physics, 7, Iss. 2: 412 (2011); http://dx.doi.org/10.1038/nphys1915
  16. J. D. Sau, S. Tewari, R. Lutchyn, T. Stanescu, and S. Das Sarma, arXiv:1006.2829v2 [cond-mat.supr-con] 30 Jun 2010.
  17. R. M. Lutchyn, T. D. Stanescu, and S. Das Sarm, Phys. Rev. Lett., 106, Iss. 12: 127001 (2011); https://doi.org/10.1103/PhysRevLett.106.127001
  18. H. Tian, S. Che, T. Xu, P. Cheung, K. Watanabe, T. Taniguchi, M. Randeria, F. Zhang, C. N. Lau, and M. W. Bockrath, arXiv 2112.13401 [cond-mat.supr-cond] 2021.
  19. S. Peotta and P. Tormä, arXiv:1506.02815v3 [cond-mat.supr-con] 2 Dec 2015.
  20. X. Hu, T. Hyart, D. I. Pikulin, and E. Rossi, Phys. Rev. Lett., 123, Iss. 23: 237002 (2019); https://doi.org/10.1103/PhysRevLett.123.237002
  21. F. Xie, Z. Song, B. Lian, and B. A. Bernevig, Phys. Rev. Lett., 124, Iss. 16: 167002 (2020); https://doi.org/10.1103/PhysRevLett.124.167002
  22. A. Julku, T. J. Peltonen, L. Liang, T. T. Heikkilä, and P. Törmä, Phys. Rev. B, 101, Iss. 6: 060505 (2020); https://doi.org/10.1103/PhysRevB.101.060505
  23. N. Verma, T. Hazra, and M. Randeria, Proc. Nat. Acad. Sci., 118, Iss. 8: e2106744118 (2021); https://doi.org/10.1073/pnas.2106744118
  24. Q. Chen, J. Stajic, S. Tan, and K. Levin, Physics Reports, 412, Iss. 1: 1 (2005); https://doi.org/10.1016/j.physrep.2005.02.005
  25. M. Randeria and E. Taylor, Annual Reviews of Condensed Matter Physics, 5, Iss. 3: 209 (2014); https://doi.org/10.1146/annurev-conmatphys-031113-1338299
  26. Y. Nakagawa, Y. Kasahara, T. Nomoto, R. Arita, T. Nojima, and Y. Iwasa, Science, 372, Iss. 4: 190 (2021); doi:10.1126/science.abb9860
  27. T. T. Heikkilä and G. E. Volovik, Basic Physics of Functionalized Graphite, 123, Iss. 7: 123 (2016); https://doi.org/10.1007/978-3-319-39355-1_6
  28. V. J. Kauppila, F. Aikebaier, and T. T. Heikkilä, Phys. Rev. B, 93, Iss. 6: 214505 (2016); https://doi.org/10.1103/PhysRevB.93.214505
  29. M. Sato and Y. Ando, Rep. Prog. Phys., 80, Iss. 7: 076501 (2017); https://doi.org/10.1088/1361-6633/aa6ac7
  30. K. T. Law, P. A. Lee, and T. K. Ng, Phys. Rev. Lett., 103, Iss. 23: 237001 (2009); https://doi.org/10.1103/PhysRevLett.103.237001
  31. K. Flensberg, Phys. Rev. B, 82, Iss. 18: 180516 (2010); https://doi.org/10.1103/PhysRevB.82.180516
  32. P. A. Ioselevich and M. V. Feigel’man, New J. Phys., 15, Iss. 5: 055011 (2013); https://doi.org/10.1088/1367-2630/15/5/055011
  33. L. Balents, C. R. Dean , D. K. Efetov, and A. F. Young , Nature Physics, 16, Iss. 5: 725 (2020); https://doi.org/10.1038/s41567-020-0906-9
  34. A. Kitaev, Annals of Physics, 321, Iss. 6: 2 (2006); https://doi.org/10.1016/j.aop.2005.10.005
  35. H. Yao and S. A. Kivelson, Phys. Rev. Lett., 99, Iss. 24: 247203 (2007); https://doi.org/10.1103/PhysRevLett.99.247203
  36. F. N. Bukhanko and A. F. Bukhanko, Physics of the Solid State, 61, Iss. 12: 2525 (2019); doi:10.1134/S1063783419120084
  37. F. N. Bukhanko and A. F. Bukhanko, Fiz. Nizk. Temp., 47, Iss. 11: 1021 (2021); doi:10.1063/10.0006569
Creative Commons License
This article is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License
©2003 NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine.

E-mail: tatar@imp.kiev.ua Phones and address of the editorial office About the collection User agreement