Go to journal homepage

Issues

 / 

2025

 / 

vol. 23 / 

issue 2

 



Download the full version of the article (in PDF format)

Nasima AKTER1, Md. ABDULLAH-AL-SHAFI2, and Md. NASIM AKHTAR1

1Dhaka University of Engineering & Technology, Gazipur, Bangladesh
2University of Development Alternative (UODA), Dhanmondi, Dhaka, Bangladesh


QCA Nanoarchitecture for Morphological Processes on Binary Images

333–348 (2025)

PACS numbers: 03.67.Dd, 68.65.Hb, 68.65.La, 73.21.Hb, 73.21.La, 73.63.Kv, 73.63.Nm, 85.35.Be

A prospective nanoarchitecture, quantum-dot cellular automata (QCA), provides a novel technique for plotting digital architectures at a minimal scale with substantial advances. It is a promising nanoarchetype with outstanding achievement to challenge the deficiencies of complementary metal–oxide–semiconductor (CMOS) based architecture just as switching speed, design, and fabrication sizes. QCA relies on the manipulation of quantum dots (nanoscale semiconductor particles) to perform computation and store information. Complex image processing approaches take in a number of cases that identified binary median filter and mathematical morphological (MM) procedures, for instance, erosion and dilation. When it comes to MM on binary images, QCA can be used to implement digital image-processing operations. Morphological operations are fundamental in image processing and computer vision for tasks such as noise reduction, object detection, and image enhancement. QCA can provide a platform for designing and implementing efficient morphological operators for binary images. Erosion and dilation are substantial approaches in frequent real-life image appliance. In this research, optimized nanostructures in QCA are outlined for MM applications that function dilation and erosion. The proposed nanoarchitecture is compared with the best counterpart that reveals a substantial advancement with regard to cell operation, extent, and delay. The proposed configurable design achieved 42.20%, 41.18%, 50.00% and 60.84% improvement, and the non-configurable design achieved 12.42%, 31.24%, 34.36% and 12.45% improvement in terms of employed cell, enclosed extent, clock and cell extent, correspondingly. Further, the energy consumption through the structures is assessed at distinct temperatures' level of 2 K.

KEY WORDS: quantum-dot cellular automata, morphology, erosion, dilation

DOI:  https://doi.org/10.15407/nnn.23.02.0333

REFERENCES
  1. J. A. Carballo, W. T. J. Chan, P. A. Gargini, A. B. Kahng, and S. Nath, 32nd International Conference on Computer Design (ICCD) (19 October, 2014), p. 139; https://doi.org/10.1109/ICCD.2014.6974673
  2. C. S. Lent, P. D. Tougaw, W. Porod, and G. H. Bernstein, Nanotechnology, 4, Iss. 1: 49 (1993); https://doi.org/10.1088/0957-4484/4/1/004
  3. N. Gallagher and G. Wise, IEEE Trans. Acoust., Speech, Signal Process, 29, Iss. 6: 1136 (1981); https://doi.org/10.1109/TASSP.1981.1163708
  4. E. Aptoula and S. Lefèvre, Pattern Recognit, 40, Iss. 11: 2914 (2007); https://doi.org/10.1016/j.patcog.2007.02.004
  5. I. Grattan-Guinness, Hist. Math, 31, Iss. 2: 163 (2004); https://doi.org/10.1016/S0315-0860(03)00032-6
  6. K. Michielsen and H. De Raedt, Phys. Rep., 347, Iss. 6: 461 (2001); https://doi.org/10.1016/S0370-1573(00)00106-X
  7. V. Chatzis and I. Pitas, IEEE Trans Image Process, 19, Iss. 7: 699 (2000); https://doi.org/10.1109/42.875192
  8. K. Benkrid, A. Benkrid, and S. Belkacemi, J. Syst. Archit., 53, Iss. 4: 184 (2007); https://doi.org/10.1016/j.sysarc.2006.09.010
  9. K. Konstantinidis, G. C. Sirakoulis, and I. Andreadis, IEEE Trans. Syst. Man Cybern, Pt. C, 39, Iss. 5: 520 (2009); https://doi.org/10.1109/TSMCC.2009.2020511
  10. T. Cole and J. C. Lusth, Prog. Quantum. Electron, 25, Iss. 4: 165 (2001); https://doi.org/10.1016/S0079-6727(01)00007-6
  11. M. Abdullah-Al-Shafi and A. N. Bahar, 5th Intl. Conf. on Informatics, Electronics & Vision (May 13, 2016), p. 620; https://doi.org/10.1109/ICIEV.2016.7760076
  12. P. D. Tougaw and C. S. Lent, J. Appl. Phys., 75, Iss. 3: 1818 (1994); https://doi.org/10.1063/1.356375
  13. M. Abdullah-Al-Shafi and A. N. Bahar, Cogent. Eng., 3, Iss. 1: 1237864 (2016); https://doi.org/10.1080/23311916.2016.1237864
  14. M. Abdullah-Al-Shafi, Nanosistemi, Nanomateriali, Nanotehnologii, 16, Iss. 2: 289 (2018); http://dx.doi.org/10.15407/nnn.16.02.289
  15. M. Abdullah-Al-Shafi, M. S. Islam, and A. N. Bahar, Int. J. Comput. Appl., 128, Iss. 2: 27 (2015); https://doi.org/10.5120/ijca2015906434
  16. M. Abdullah-Al-Shafi, A. N. Bahar, F.Ahmad, and K. Ahmed, Cogent. Eng., 4, Iss. 1: 1349539 (2017); https://doi.org/10.1080/23311916.2017.1349539
  17. M. Abdullah-Al-Shafi and A. N. Bahar, Cogent. Eng., 4, Iss. 1: 1391060 (2017); https://doi.org/10.1080/23311916.2017.1391060
  18. M. Abdullah-Al-Shafi and A. N. Bahar, J. Nanoelectron. Optoelectron., 13, Iss. 6: 856 (2018); https://doi.org/10.1166/jno.2018.2302
  19. M. Abdullah-Al-Shafi and A. N. Bahar, Int. Nano Lett., 9, Iss. 3: 265 (2019); https://doi.org/10.1007/s40089-019-0279-1
  20. M. Abdullah-Al-Shafi and A. N. Bahar, J. Comput. Theor. Nanosci., 14, Iss. 5: 2416 (2017); https://doi.org/10.1166/jctn.2017.6842
  21. M. Abdullah-Al-Shafi and A. N. Bahar, Sens. Lett., 17, Iss. 7: 595 (2019); https://doi.org/10.1166/sl.2019.4117
  22. M. Abdullah-Al-Shafi and A. N. Bahar, J. Nanoelectron. Optoelectron., 14: Iss. 9: 1275 (2019); https://doi.org/10.1166/jno.2019.2630
  23. M. Abdullah-Al-Shafi and Z. Rahman, Solid State Electron. Lett., 1, Iss. 2: 73 (2019); https://doi.org/10.1016/j.ssel.2019.11.004
  24. M. Abdullah-Al-Shafi, A. N. Bahar, M. A. Habib, M. M. R. Bhuiyan, F. Ahmad, P. Z. Ahmad, and K. Ahmed, Ain Shams Eng. J., 9, Iss. 4: 2641 (2018); https://doi.org/10.1016/j.asej.2017.05.010
  25. M. T. Niemier, M. J. Kontz, and P. M. Kogge, Proc. 37th Annual Design Automation Conference (2000), p. 227; https://doi.org/10.1145/337292.337398
  26. M. Crocker, X. S. Hu, M. Niemier, M. Yan, and G. Bernstein, IEEE Trans. Nanotechnol., 7, Iss. 3: 376 (2008); https://doi.org/10.1109/TNANO.2007.915022
  27. M. Abdullah-Al-Shafi and A. N. Bahar, Int. J. Inf. Technol. Comput. Sci., 10, Iss. 10: 38 (2018); https://doi.org/10.5815/ijitcs.2018.10.05
  28. Md. Abdullah-Al-Shafi, Commun. Appl. Electron., 4, Iss. 1: 20 (2016); http://dx.doi.org/10.5120/cae2016652004
  29. J. L. Cardenas-Barrera, K. N. Plataniotis, and A. N. Venetsanopoulos, Math. Probl. Eng., 8, Iss. 1: 87 (2002); https://doi.org/10.1080/10241230211381
  30. V. Mardiris and V. Chatzis, J. Eng. Sci. Technol. Rev., 9, Iss. 2: 25 (2016); https://doi.org/10.25103/jestr.092.05
  31. R. Zhang, K. Walus, W. Wang, and G. A. Jullien, IEEE Trans. Nanotechnol., 3, Iss: 4: 443 (2004); https://doi.org/10.1109/TNANO.2004.834177
  32. I. Amlani, A. O. Orlov, R. K. Kummamuru, G. H. Bernstein, C. S. Lent, and G. L. Snider, Appl. Phys. Lett., 77, Iss. 5: 738 (2000); https://doi.org/10.1063/1.127103
  33. S. B. Tripathi, A. Narzary, R. Toppo, M. Goswami, and B. Sen, J. Phys. Conf. Ser., 1039, Iss. 1: 012028 (2018); https://doi.org/10.1088/1742-6596/1039/1/012028
  34. M. Abdullah-Al-Shafi and R. Ziaur, Solid State Electron. Lett., 1, Iss. 2: 73 (2019); https://doi.org/10.1016/j.ssel.2019.11.004
  35. S. Sheikhfaal, S. Angizi, S. Sarmadi, M. H. Moaiyeri, and S. Sayedsalehi, Microelectron. J., 46, Iss.6: 462 (2015); https://doi.org/10.1016/j.mejo.2015.03.016
  36. S. S. Ahmadpour, M. Mosleh, and S. Rasouli Heikalabad, J. Supercomput., 76, Iss. 12: 10155 (2020); https://doi.org/10.1007/s11227-020-03249-3
  37. M. Abdullah-Al-Shafi, M. S. Islam, and A. N. Bahar, Int. Nano Lett., 10, Iss. 3: 177 (2020); https://doi.org/10.1007/s40089-020-00304-y
  38. M. R. Hasan, R. Guest, and F. Deravi, ACM Comput. Surv., 55, Iss. 13: 1 (2023); https://doi.org/10.1145/3583135
Creative Commons License
This article is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License
©2003 NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine.

E-mail: tatar@imp.kiev.ua Phones and address of the editorial office About the collection User agreement