Download the full
version of the article (in PDF format)
Nasima AKTER1, Md. ABDULLAH-AL-SHAFI2, and Md. NASIM AKHTAR1
1Dhaka University of Engineering & Technology, Gazipur, Bangladesh
2University of Development Alternative (UODA), Dhanmondi, Dhaka, Bangladesh
QCA Nanoarchitecture for Morphological Processes on Binary Images
333–348 (2025)
PACS numbers: 03.67.Dd, 68.65.Hb, 68.65.La, 73.21.Hb, 73.21.La, 73.63.Kv, 73.63.Nm, 85.35.Be
A prospective nanoarchitecture, quantum-dot cellular automata (QCA), provides a novel technique for plotting digital architectures at a minimal scale with substantial advances. It is a promising nanoarchetype with outstanding achievement to challenge the deficiencies of complementary metal–oxide–semiconductor (CMOS) based architecture just as switching speed, design, and fabrication sizes. QCA relies on the manipulation of quantum dots (nanoscale semiconductor particles) to perform computation and store information. Complex image processing approaches take in a number of cases that identified binary median filter and mathematical morphological (MM) procedures, for instance, erosion and dilation. When it comes to MM on binary images, QCA can be used to implement digital image-processing operations. Morphological operations are fundamental in image processing and computer vision for tasks such as noise reduction, object detection, and image enhancement. QCA can provide a platform for designing and implementing efficient morphological operators for binary images. Erosion and dilation are substantial approaches in frequent real-life image appliance. In this research, optimized nanostructures in QCA are outlined for MM applications that function dilation and erosion. The proposed nanoarchitecture is compared with the best counterpart that reveals a substantial advancement with regard to cell operation, extent, and delay. The proposed configurable design achieved 42.20%, 41.18%, 50.00% and 60.84% improvement, and the non-configurable design achieved 12.42%, 31.24%, 34.36% and 12.45% improvement in terms of employed cell, enclosed extent, clock and cell extent, correspondingly. Further, the energy consumption through the structures is assessed at distinct temperatures' level of 2 K.
KEY WORDS: quantum-dot cellular automata, morphology, erosion, dilation
DOI: https://doi.org/10.15407/nnn.23.02.0333
REFERENCES
- J. A. Carballo, W. T. J. Chan, P. A. Gargini, A. B. Kahng, and S. Nath, 32nd International Conference on Computer Design (ICCD) (19 October, 2014), p. 139; https://doi.org/10.1109/ICCD.2014.6974673
- C. S. Lent, P. D. Tougaw, W. Porod, and G. H. Bernstein, Nanotechnology, 4, Iss. 1: 49 (1993); https://doi.org/10.1088/0957-4484/4/1/004
- N. Gallagher and G. Wise, IEEE Trans. Acoust., Speech, Signal Process, 29, Iss. 6: 1136 (1981); https://doi.org/10.1109/TASSP.1981.1163708
- E. Aptoula and S. Lefèvre, Pattern Recognit, 40, Iss. 11: 2914 (2007); https://doi.org/10.1016/j.patcog.2007.02.004
- I. Grattan-Guinness, Hist. Math, 31, Iss. 2: 163 (2004); https://doi.org/10.1016/S0315-0860(03)00032-6
- K. Michielsen and H. De Raedt, Phys. Rep., 347, Iss. 6: 461 (2001); https://doi.org/10.1016/S0370-1573(00)00106-X
- V. Chatzis and I. Pitas, IEEE Trans Image Process, 19, Iss. 7: 699 (2000); https://doi.org/10.1109/42.875192
- K. Benkrid, A. Benkrid, and S. Belkacemi, J. Syst. Archit., 53, Iss. 4: 184 (2007); https://doi.org/10.1016/j.sysarc.2006.09.010
- K. Konstantinidis, G. C. Sirakoulis, and I. Andreadis, IEEE Trans. Syst. Man Cybern, Pt. C, 39, Iss. 5: 520 (2009); https://doi.org/10.1109/TSMCC.2009.2020511
- T. Cole and J. C. Lusth, Prog. Quantum. Electron, 25, Iss. 4: 165 (2001); https://doi.org/10.1016/S0079-6727(01)00007-6
- M. Abdullah-Al-Shafi and A. N. Bahar, 5th Intl. Conf. on Informatics, Electronics & Vision (May 13, 2016), p. 620; https://doi.org/10.1109/ICIEV.2016.7760076
- P. D. Tougaw and C. S. Lent, J. Appl. Phys., 75, Iss. 3: 1818 (1994); https://doi.org/10.1063/1.356375
- M. Abdullah-Al-Shafi and A. N. Bahar, Cogent. Eng., 3, Iss. 1: 1237864 (2016); https://doi.org/10.1080/23311916.2016.1237864
- M. Abdullah-Al-Shafi, Nanosistemi, Nanomateriali, Nanotehnologii, 16, Iss. 2: 289 (2018); http://dx.doi.org/10.15407/nnn.16.02.289
- M. Abdullah-Al-Shafi, M. S. Islam, and A. N. Bahar, Int. J. Comput. Appl., 128, Iss. 2: 27 (2015); https://doi.org/10.5120/ijca2015906434
- M. Abdullah-Al-Shafi, A. N. Bahar, F.Ahmad, and K. Ahmed, Cogent. Eng., 4, Iss. 1: 1349539 (2017); https://doi.org/10.1080/23311916.2017.1349539
- M. Abdullah-Al-Shafi and A. N. Bahar, Cogent. Eng., 4, Iss. 1: 1391060 (2017); https://doi.org/10.1080/23311916.2017.1391060
- M. Abdullah-Al-Shafi and A. N. Bahar, J. Nanoelectron. Optoelectron., 13, Iss. 6: 856 (2018); https://doi.org/10.1166/jno.2018.2302
- M. Abdullah-Al-Shafi and A. N. Bahar, Int. Nano Lett., 9, Iss. 3: 265 (2019); https://doi.org/10.1007/s40089-019-0279-1
- M. Abdullah-Al-Shafi and A. N. Bahar, J. Comput. Theor. Nanosci., 14, Iss. 5: 2416 (2017); https://doi.org/10.1166/jctn.2017.6842
- M. Abdullah-Al-Shafi and A. N. Bahar, Sens. Lett., 17, Iss. 7: 595 (2019); https://doi.org/10.1166/sl.2019.4117
- M. Abdullah-Al-Shafi and A. N. Bahar, J. Nanoelectron. Optoelectron., 14: Iss. 9: 1275 (2019); https://doi.org/10.1166/jno.2019.2630
- M. Abdullah-Al-Shafi and Z. Rahman, Solid State Electron. Lett., 1, Iss. 2: 73 (2019); https://doi.org/10.1016/j.ssel.2019.11.004
- M. Abdullah-Al-Shafi, A. N. Bahar, M. A. Habib, M. M. R. Bhuiyan, F. Ahmad, P. Z. Ahmad, and K. Ahmed, Ain Shams Eng. J., 9, Iss. 4: 2641 (2018); https://doi.org/10.1016/j.asej.2017.05.010
- M. T. Niemier, M. J. Kontz, and P. M. Kogge, Proc. 37th Annual Design Automation Conference (2000), p. 227; https://doi.org/10.1145/337292.337398
- M. Crocker, X. S. Hu, M. Niemier, M. Yan, and G. Bernstein, IEEE Trans. Nanotechnol., 7, Iss. 3: 376 (2008); https://doi.org/10.1109/TNANO.2007.915022
- M. Abdullah-Al-Shafi and A. N. Bahar, Int. J. Inf. Technol. Comput. Sci., 10, Iss. 10: 38 (2018); https://doi.org/10.5815/ijitcs.2018.10.05
- Md. Abdullah-Al-Shafi, Commun. Appl. Electron., 4, Iss. 1: 20 (2016); http://dx.doi.org/10.5120/cae2016652004
- J. L. Cardenas-Barrera, K. N. Plataniotis, and A. N. Venetsanopoulos, Math. Probl. Eng., 8, Iss. 1: 87 (2002); https://doi.org/10.1080/10241230211381
- V. Mardiris and V. Chatzis, J. Eng. Sci. Technol. Rev., 9, Iss. 2: 25 (2016); https://doi.org/10.25103/jestr.092.05
- R. Zhang, K. Walus, W. Wang, and G. A. Jullien, IEEE Trans. Nanotechnol., 3, Iss: 4: 443 (2004); https://doi.org/10.1109/TNANO.2004.834177
- I. Amlani, A. O. Orlov, R. K. Kummamuru, G. H. Bernstein, C. S. Lent, and G. L. Snider, Appl. Phys. Lett., 77, Iss. 5: 738 (2000); https://doi.org/10.1063/1.127103
- S. B. Tripathi, A. Narzary, R. Toppo, M. Goswami, and B. Sen, J. Phys. Conf. Ser., 1039, Iss. 1: 012028 (2018); https://doi.org/10.1088/1742-6596/1039/1/012028
- M. Abdullah-Al-Shafi and R. Ziaur, Solid State Electron. Lett., 1, Iss. 2: 73 (2019); https://doi.org/10.1016/j.ssel.2019.11.004
- S. Sheikhfaal, S. Angizi, S. Sarmadi, M. H. Moaiyeri, and S. Sayedsalehi, Microelectron. J., 46, Iss.6: 462 (2015); https://doi.org/10.1016/j.mejo.2015.03.016
- S. S. Ahmadpour, M. Mosleh, and S. Rasouli Heikalabad, J. Supercomput., 76, Iss. 12: 10155 (2020); https://doi.org/10.1007/s11227-020-03249-3
- M. Abdullah-Al-Shafi, M. S. Islam, and A. N. Bahar, Int. Nano Lett., 10, Iss. 3: 177 (2020); https://doi.org/10.1007/s40089-020-00304-y
- M. R. Hasan, R. Guest, and F. Deravi, ACM Comput. Surv., 55, Iss. 13: 1 (2023); https://doi.org/10.1145/3583135
|