Download the
full version of the article (in PDF format)
Majeed Ali HABEEB, Idrees OREIBI, Rehab Shather Abdul HAMZA, Dhay Ali SUBAR, and Khalid AL-AMMAR
Effect of WC-Nanoparticles' Addition on the Structural and Dielectric Characteristics of a Biopolymer
177–189 (2025)
PACS numbers: 72.80.Tm, 77.22.Ch, 77.22.Gm, 78.30.Jv, 81.07.Pr, 82.35.Np
This study involves preparing nanocomposites consisting of polyvinyl alcohol (PVA) and tungsten carbide (WC) nanoparticles. The casting process is employed to create these nanocomposites, with varying weight percentages of WC nanoparticles: 0, 1, 2, and 3 wt.%. Various ways of diagnosis are employed to analyse the PVA–WC nanocomposites, including Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) imaging, and optical microscopy imaging. The experimental findings obtained from the images captured by an optical microscope reveal the spatial arrangement of tungsten-carbide nanoparticles throughout all nanocomposite films. Additionally, these results demonstrate the presence of a cohesive network of ions dispersed throughout the polymer matrix, with a tungsten-carbide nanoparticles' concentration of 3 wt.%. Furthermore, the experimental findings obtained from Fourier-transform infrared spectroscopy (FTIR) demonstrate an upward trend between the absorbance values of the PVA–WC nanocomposites and the fraction of tungsten-carbide nanoparticles. The peak properties remain consistent, and most bonds exhibit similar wavenumbers. The electrical characteristics of nanocomposites are investigated in the frequency range of 100-to-5×106 Hz at ambient temperature. The analysis of the A.C. electric properties reveals that, as the frequency of the applied electrical field increases, the dielectric constant and dielectric loss of the nanocomposites diminish. In contrast, these properties indicate an increase with tungsten-carbide nanoparticles' concentration. Additionally, the A.C. electrical conductivity of the nanocomposites displays an increase with higher concentrations of tungsten-carbide nanoparticles and frequency, while remaining relatively constant at high frequencies. The conclusive findings indicate that the nanostructures composed of polyvinyl alcohol and tungsten carbide (PVA–WC) possess potential applications in diverse electrical and electronic nanodevices
KEY WORDS: PVA, WC nanoparticles, nanocomposites, electrical properties
DOI: https://doi.org/10.15407/nnn.23.01.0177
REFERENCES
- Mohamed S. A. Darwish, Mohamed H. Mostafa, and Laila M. Al-Harbi, International Journal of Molecular Sciences, 23, No. 3: 1023 (2022); https://doi.org/10.3390/ijms23031023
- Q. M. Jebur, A. Hashim, and M. A. Habeeb, Egyptian Journal of Chemistry, 63: 719 (2020); doi:10.21608/ejchem.2019.14847.1900
- M. A. Habeeb and Z. S. Jaber, East European Journal of Physics, 4: 176 (2022); doi:10.26565/2312-4334-2022-4-18
- M. A. Habeeb, European Journal of Scientific Research, 57, No. 3: 478 (2011).
- A. H. Hadi and M. A. Habeeb, Journal of Mechanical Engineering Research and Developments, 44, No. 3: 265 (2021); https://jmerd.net/03-2021-265-274
- P. G. Li, M. Lei, Z. B. Sun, L. Z. Cao, Y. F. Guo, X. Guo, and W. H. Tang, Journal of Alloys and Compounds, 430, No. 1: 237 (2007); https://doi.org/10.1016/j.jallcom.2006.04.070
- N. Hayder, M. A. Habeeb, and A. Hashim, Egyptian Journal of Chemistry, 63: 577 (2020); doi:10.21608/ejchem.2019.14646.1887
- S. M. Mahdi and M. A. Habeeb, Optical and Quantum Electronics, 54, Iss. 12: 854 (2022); https://doi.org/10.1007/s11082-022-04267-6
- Kh. G. Kirakosyan, Kh. V. Manukyan, S. L. Kharatyan, and R. A. Mnatsakanyan, Materials Chemistry and Physics, 110, No. 3: 454 (2008); https://doi.org/10.1016/j.matchemphys.2008.03.003
- M. A. Habeeb, A. Hashim, and N. Hayder, Egyptian Journal of Chemistry, 63: 709 (2020); https://dx.doi.org/10.21608/ejchem.2019.13333.1832
- A. Hashim, M. A. Habeeb, and Q. M. Jebur, Egyptian Journal of Chemistry, 63: 735 (2020); https://dx.doi.org/10.21608/ejchem.2019.14849.1901
- S. M. Mahdi and M. A. Habeeb, Physics and Chemistry of Solid State, 23, No. 4: 785 (2022); doi:10.15330/pcss.23.4.785-792
- Shawna Nations, Monique Long, Mike Wages, Jonathan D. Maul, Christopher W. Theodorakis, and George P. Cobb, Chemosphere, 135: 166 (2015); https://doi.org/10.1016/j.chemosphere.2015.03.078
- M. A. Habeeb and W. S. Mahdi, International Journal of Emerging Trends in Engineering Research, 7, No. 9 : 247 (2019); doi:10.30534/ijeter/2019/06792019
- M. A. Habeeb and R. S. Abdul Hamza, Journal of Bionanoscience, 12, No. 3: 328 (2018); https://doi.org/10.1166/jbns.2018.1535
- Shruti Nambiar and John T. W. Yeow, ACS Applied Materials & Interfaces, 4, No. 11: 5717 (2012); https://doi.org/10.1021/am300783d
- M. A. Habeeb, A. Hashim, and N. Hayder, Egyptian Journal of Chemistry, 63: 697 (2020); https://dx.doi.org/10.21608/ejchem.2019.12439.1774
- M. A. Habeeb and W. K. Kadhim, Journal of Engineering and Applied Sciences, 9, No. 4: 109 (2014); doi:10.36478/jeasci.2014.109.113
- M. A. Habeeb, Journal of Engineering and Applied Sciences, 9, No. 4: 102 (2014); doi:10.36478/jeasci.2014.102.108
- Hyeon Jeong Park, Arash Badakhsh, Ik Tae Im, Min-Soo Kim, and Chan Woo Park, Applied Thermal Engineering, 107: 907 (2016); https://doi.org/10.1016/j.applthermaleng.2016.07.053
- S. M. Mahdi and M. A. Habeeb, Digest Journal of Nanomaterials and Biostructures, 17, No. 3: 941 (2022); https://doi.org/10.15251/DJNB.2022.173.941
- A. H. Hadi and M. A. Habeeb, Journal of Physics: Conference Series, 1973, No. 1: 012063 (2021); doi:10.1088/1742-6596/1973/1/012063
- Q. M. Jebur, A. Hashim, and M. A. Habeeb, Egyptian Journal of Chemistry, 63, No. 2: 611 (2020); https://dx.doi.org/10.21608/ejchem.2019.10197.1669
- Bahaa Hussien Rabee and Idrees Oreibi, Bulletin of Electrical Engineering and Informatics, 7, No. 4: 538 (2018); https://doi.org/10.11591/eei.v7i4.924
- M. A. Habeeb and A. H. Mohammed, Optical and Quantum Electronics, 55, Iss. 9: 791 (2023); https://doi.org/10.1007/s11082-023-05061-8
- M. H. Dwech, M. A. Habeeb, and A. H. Mohammed, Ukr. J. Phys., 67, No. 10: 757 (2022); https://doi.org/10.15407/ujpe67.10.757
- R. S. Abdul Hamza and M. A. Habeeb, Optical and Quantum Electronics, 55, Iss. 8: 705 (2023); https://doi.org/10.1007/s11082-023-04995-3
- Morget Martin, Neena Prasad, Muthu Mariappan Sivalingam, D. Sastikumar, and Balasubramanian Karthikeyan, Journal of Material Science: Material in Electronics, 29: 365 (2018); https://doi.org/10.1007/s10854-017-7925-z
- M. A. Habeeb and W. H. Rahdi, Optical and Quantum Electronics, 55, Iss. 4: 334 (2023); https://doi.org/10.1007/s11082-023-04639-6
- R. Dalven and R. Gill, J. Appl. Phys., 38, No. 2: 753 (1967); doi:10.1063/1.1709406
- M. A. Habeeb and R. S. A. Hamza, Indonesian Journal of Electrical Engineering and Informatics, 6, No. 4: 428 (2018); doi:10.11591/ijeei.v6i1.511
- A. Goswami, A. K. Bajpai, and B. K. Sinha, Polym. Bull., 75, No. 2: 781 (2018); https://doi.org/10.1007/s00289-017-2067-2
- A. A. Mohammed and M. A. Habeeb, East European Journal of Physics, 2: 157 (2023); doi:10.26565/2312-4334-2023-2-15
- O. E. Gouda, S. F. Mahmoud, A. A. El-Gendy, and A. S. Haiba, Indonesian Journal of Electrical Engineering, 12, No. 12: 7987 (2014); https://doi.org/10.11591/telkomnika.v12i12.6675
- H. Chandrakala, B. Ramaraj, and G. Madhu, Journal of Alloys and Compounds, 551: 531 (2013); https://doi.org/10.1016/j.jallcom.2012.10.188
- N. K. Al-Sharifi and M. A. Habeeb, East European Journal of Physics, 2: 341 (2023); doi:10.26565/2312-4334-2023-2-40
- N. Tran, A. Mir, D. Mallik, A. Sinha, S. Nayar, and T. J. Webster, Int. J. Nanomedicine, 5: 277 (2010).
- Z. S. Jaber, M. A. Habeeb, and W. H. Radi, East European Journal of Physics, 2: 228 (2023); doi:10.26565/2312-4334-2023-2-25
- S. M. Mahdi and M. A. Habeeb, AIMS Materials Science, 10, No. 2: 288 (2023); doi:10.3934/matersci.2023015
|