Go to main page

Issues

 / 

2025

 / 

Vol. 23 / 

Issue 1

 



Download the full version of the article (in PDF format)

Majeed Ali HABEEB, Idrees OREIBI, Rehab Shather Abdul HAMZA, Dhay Ali SUBAR, and Khalid AL-AMMAR

Effect of WC-Nanoparticles' Addition on the Structural and Dielectric Characteristics of a Biopolymer

177–189 (2025)

PACS numbers: 72.80.Tm, 77.22.Ch, 77.22.Gm, 78.30.Jv, 81.07.Pr, 82.35.Np

This study involves preparing nanocomposites consisting of polyvinyl alcohol (PVA) and tungsten carbide (WC) nanoparticles. The casting process is employed to create these nanocomposites, with varying weight percentages of WC nanoparticles: 0, 1, 2, and 3 wt.%. Various ways of diagnosis are employed to analyse the PVA–WC nanocomposites, including Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) imaging, and optical microscopy imaging. The experimental findings obtained from the images captured by an optical microscope reveal the spatial arrangement of tungsten-carbide nanoparticles throughout all nanocomposite films. Additionally, these results demonstrate the presence of a cohesive network of ions dispersed throughout the polymer matrix, with a tungsten-carbide nanoparticles' concentration of 3 wt.%. Furthermore, the experimental findings obtained from Fourier-transform infrared spectroscopy (FTIR) demonstrate an upward trend between the absorbance values of the PVA–WC nanocomposites and the fraction of tungsten-carbide nanoparticles. The peak properties remain consistent, and most bonds exhibit similar wavenumbers. The electrical characteristics of nanocomposites are investigated in the frequency range of 100-to-5×106 Hz at ambient temperature. The analysis of the A.C. electric properties reveals that, as the frequency of the applied electrical field increases, the dielectric constant and dielectric loss of the nanocomposites diminish. In contrast, these properties indicate an increase with tungsten-carbide nanoparticles' concentration. Additionally, the A.C. electrical conductivity of the nanocomposites displays an increase with higher concentrations of tungsten-carbide nanoparticles and frequency, while remaining relatively constant at high frequencies. The conclusive findings indicate that the nanostructures composed of polyvinyl alcohol and tungsten carbide (PVA–WC) possess potential applications in diverse electrical and electronic nanodevices

KEY WORDS: PVA, WC nanoparticles, nanocomposites, electrical properties

DOI:  https://doi.org/10.15407/nnn.23.01.0177

REFERENCES
  1. Mohamed S. A. Darwish, Mohamed H. Mostafa, and Laila M. Al-Harbi, International Journal of Molecular Sciences, 23, No. 3: 1023 (2022); https://doi.org/10.3390/ijms23031023
  2. Q. M. Jebur, A. Hashim, and M. A. Habeeb, Egyptian Journal of Chemistry, 63: 719 (2020); doi:10.21608/ejchem.2019.14847.1900
  3. M. A. Habeeb and Z. S. Jaber, East European Journal of Physics, 4: 176 (2022); doi:10.26565/2312-4334-2022-4-18
  4. M. A. Habeeb, European Journal of Scientific Research, 57, No. 3: 478 (2011).
  5. A. H. Hadi and M. A. Habeeb, Journal of Mechanical Engineering Research and Developments, 44, No. 3: 265 (2021); https://jmerd.net/03-2021-265-274
  6. P. G. Li, M. Lei, Z. B. Sun, L. Z. Cao, Y. F. Guo, X. Guo, and W. H. Tang, Journal of Alloys and Compounds, 430, No. 1: 237 (2007); https://doi.org/10.1016/j.jallcom.2006.04.070
  7. N. Hayder, M. A. Habeeb, and A. Hashim, Egyptian Journal of Chemistry, 63: 577 (2020); doi:10.21608/ejchem.2019.14646.1887
  8. S. M. Mahdi and M. A. Habeeb, Optical and Quantum Electronics, 54, Iss. 12: 854 (2022); https://doi.org/10.1007/s11082-022-04267-6
  9. Kh. G. Kirakosyan, Kh. V. Manukyan, S. L. Kharatyan, and R. A. Mnatsakanyan, Materials Chemistry and Physics, 110, No. 3: 454 (2008); https://doi.org/10.1016/j.matchemphys.2008.03.003
  10. M. A. Habeeb, A. Hashim, and N. Hayder, Egyptian Journal of Chemistry, 63: 709 (2020); https://dx.doi.org/10.21608/ejchem.2019.13333.1832
  11. A. Hashim, M. A. Habeeb, and Q. M. Jebur, Egyptian Journal of Chemistry, 63: 735 (2020); https://dx.doi.org/10.21608/ejchem.2019.14849.1901
  12. S. M. Mahdi and M. A. Habeeb, Physics and Chemistry of Solid State, 23, No. 4: 785 (2022); doi:10.15330/pcss.23.4.785-792
  13. Shawna Nations, Monique Long, Mike Wages, Jonathan D. Maul, Christopher W. Theodorakis, and George P. Cobb, Chemosphere, 135: 166 (2015); https://doi.org/10.1016/j.chemosphere.2015.03.078
  14. M. A. Habeeb and W. S. Mahdi, International Journal of Emerging Trends in Engineering Research, 7, No. 9 : 247 (2019); doi:10.30534/ijeter/2019/06792019
  15. M. A. Habeeb and R. S. Abdul Hamza, Journal of Bionanoscience, 12, No. 3: 328 (2018); https://doi.org/10.1166/jbns.2018.1535
  16. Shruti Nambiar and John T. W. Yeow, ACS Applied Materials & Interfaces, 4, No. 11: 5717 (2012); https://doi.org/10.1021/am300783d
  17. M. A. Habeeb, A. Hashim, and N. Hayder, Egyptian Journal of Chemistry, 63: 697 (2020); https://dx.doi.org/10.21608/ejchem.2019.12439.1774
  18. M. A. Habeeb and W. K. Kadhim, Journal of Engineering and Applied Sciences, 9, No. 4: 109 (2014); doi:10.36478/jeasci.2014.109.113
  19. M. A. Habeeb, Journal of Engineering and Applied Sciences, 9, No. 4: 102 (2014); doi:10.36478/jeasci.2014.102.108
  20. Hyeon Jeong Park, Arash Badakhsh, Ik Tae Im, Min-Soo Kim, and Chan Woo Park, Applied Thermal Engineering, 107: 907 (2016); https://doi.org/10.1016/j.applthermaleng.2016.07.053
  21. S. M. Mahdi and M. A. Habeeb, Digest Journal of Nanomaterials and Biostructures, 17, No. 3: 941 (2022); https://doi.org/10.15251/DJNB.2022.173.941
  22. A. H. Hadi and M. A. Habeeb, Journal of Physics: Conference Series, 1973, No. 1: 012063 (2021); doi:10.1088/1742-6596/1973/1/012063
  23. Q. M. Jebur, A. Hashim, and M. A. Habeeb, Egyptian Journal of Chemistry, 63, No. 2: 611 (2020); https://dx.doi.org/10.21608/ejchem.2019.10197.1669
  24. Bahaa Hussien Rabee and Idrees Oreibi, Bulletin of Electrical Engineering and Informatics, 7, No. 4: 538 (2018); https://doi.org/10.11591/eei.v7i4.924
  25. M. A. Habeeb and A. H. Mohammed, Optical and Quantum Electronics, 55, Iss. 9: 791 (2023); https://doi.org/10.1007/s11082-023-05061-8
  26. M. H. Dwech, M. A. Habeeb, and A. H. Mohammed, Ukr. J. Phys., 67, No. 10: 757 (2022); https://doi.org/10.15407/ujpe67.10.757
  27. R. S. Abdul Hamza and M. A. Habeeb, Optical and Quantum Electronics, 55, Iss. 8: 705 (2023); https://doi.org/10.1007/s11082-023-04995-3
  28. Morget Martin, Neena Prasad, Muthu Mariappan Sivalingam, D. Sastikumar, and Balasubramanian Karthikeyan, Journal of Material Science: Material in Electronics, 29: 365 (2018); https://doi.org/10.1007/s10854-017-7925-z
  29. M. A. Habeeb and W. H. Rahdi, Optical and Quantum Electronics, 55, Iss. 4: 334 (2023); https://doi.org/10.1007/s11082-023-04639-6
  30. R. Dalven and R. Gill, J. Appl. Phys., 38, No. 2: 753 (1967); doi:10.1063/1.1709406
  31. M. A. Habeeb and R. S. A. Hamza, Indonesian Journal of Electrical Engineering and Informatics, 6, No. 4: 428 (2018); doi:10.11591/ijeei.v6i1.511
  32. A. Goswami, A. K. Bajpai, and B. K. Sinha, Polym. Bull., 75, No. 2: 781 (2018); https://doi.org/10.1007/s00289-017-2067-2
  33. A. A. Mohammed and M. A. Habeeb, East European Journal of Physics, 2: 157 (2023); doi:10.26565/2312-4334-2023-2-15
  34. O. E. Gouda, S. F. Mahmoud, A. A. El-Gendy, and A. S. Haiba, Indonesian Journal of Electrical Engineering, 12, No. 12: 7987 (2014); https://doi.org/10.11591/telkomnika.v12i12.6675
  35. H. Chandrakala, B. Ramaraj, and G. Madhu, Journal of Alloys and Compounds, 551: 531 (2013); https://doi.org/10.1016/j.jallcom.2012.10.188
  36. N. K. Al-Sharifi and M. A. Habeeb, East European Journal of Physics, 2: 341 (2023); doi:10.26565/2312-4334-2023-2-40
  37. N. Tran, A. Mir, D. Mallik, A. Sinha, S. Nayar, and T. J. Webster, Int. J. Nanomedicine, 5: 277 (2010).
  38. Z. S. Jaber, M. A. Habeeb, and W. H. Radi, East European Journal of Physics, 2: 228 (2023); doi:10.26565/2312-4334-2023-2-25
  39. S. M. Mahdi and M. A. Habeeb, AIMS Materials Science, 10, No. 2: 288 (2023); doi:10.3934/matersci.2023015
Creative Commons License
This article is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License
©2003 NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine.

E-mail: tatar@imp.kiev.ua Editorial board phones and address About the collection User agreement