Download full
version of the article (PDF format)
O.D. RUD, L.Yu. MATSUI, L.L. VOVCHENKO, I.M. KIRIAN, M.O. RUD, A.M. LAKHNYK, Yu.V. LEPEEVA, A.P. NAUMENKO, O.S. YAKOVENKO, Ya.Ye. PAZDRIY, and D.V. VINNYCHENKO
Synthesis, Structure and Electromagnetic Properties of Composite Materials Based on Carbon Nanospheres
135–148 (2025)
PACS numbers: 61.05.cp, 68.37.Og, 72.80.Tm, 77.22.Gm, 78.20.Ci, 78.40.Ri, 81.05.U-
The influence of carbon nanospheres (CNS) on the electromagnetic properties of composite materials is investigated. CNS are fabricated by high-frequency electrical-discharge treatment of propane–butane mixture in the ratio of 0.5:0.5. The structural characteristics of the synthesized materials are investigated through high-resolution electron microscopy and x-ray diffraction analysis. As revealed, the individual particles measured as of 20–40 nm in size assemble into agglomerates exhibiting a predominantly spherical morphology. Each particle is composed of multilayered, partially closed graphene shells with structural defects. As found, the synthesized material has graphite-like type of short-range atomic order. As shown, the addition of 10–20 wt.% of CNS into epoxy matrix results in increase of dielectric permittivity and shielding properties of composites in frequency range 26–40 GHz.
KEY WORDS: carbon nanospheres, permittivity, dielectric loss, electrical conductivity, electromagnetic shielding
DOI: https://doi.org/10.15407/nnn.23.01.0135
REFERENCES
- J. Guo, X. Li, Z. Chen, J. Zhu, X. Mai, R. Wei, K. Sun, H. Liu, Y. Chen, N. Naik, and Z. Guo, J. Mater. Sci. Technol., 108: 64 (2022); https://doi.org/10.1016/j.jmst.2021.08.049
- Ján Kruželák, Andrea Kvasničáková, Klaudia Hložeková, and Ivan Hudec, Nanoscale Advances., 3, No. 1: 123 (2021); https://doi.org/10.1039/D0NA00760A
- A. Kaushal and V. Singh, J. Appl. Polym. Sci., 139: e51444 (2022); https://doi.org/10.1002/app.51444
- E. Mikinka and M. Siwak, J. Mater. Sci: Mater. Electron., 32: 24585 (2021); https://doi.org/10.1007/s10854-021-06900-8
- M. Zhang, H. Ling, T. Wang, Y. Jiang, G. Song, W. Zhao, L. Zhao, T. Cheng, Y. Xie, Y. Guo, W. Zhao, L. Yuan, A. Meng, and Z. Li, Nano-Micro Lett., 14: 157 (2022); https://doi.org/10.1007/s40820-022-00900-x
- R. Hashemi and G. J. Weng, Carbon, 96: 474 (2016); https://doi.org/10.1016/j.carbon.2015.09.103
- X. Xiong, H. Zhang, H. Lv, L. Yang, G. Liang, J. Zhang, Y. Lai, H.-W. Cheng, and R. Che, Carbon, 219: 118834 (2024); https://doi.org/10.1016/j.carbon.2024.118834
- R. Kumar, S. Sahoo, E. Joanni, R. K. Singh, W. K. Tan, K. K. Kar, and A. Matsuda, Carbon, 177: 304 (2021); https://doi.org/10.1016/j.carbon.2021.02.091
- B. Zhao, Y. Li, H. Ji, P. Bai, S. Wang, B. Fan, X. Guo, and R. Zhang, Carbon, 176: 411 (2021); https://doi.org/10.1016/j.carbon.2021.01.136
- G. Yang, M. Wang, J. Dong, F. Su, Y. Ji, C. Liu, and C. Shen, Compos. B Eng., 246: 110253 (2022); https://doi.org/10.1016/j.compositesb.2022.110253
- Y. Zhao, H. Zhang, X. Yang, H. Huang, G. Zhao, T. Cong, X. Zuo, Z. Fan, S. Yang, and L. Pan, Carbon, 171: 395 (2021); https://doi.org/10.1016/jcarbon.2020.09.036
- Y. Song, F. Yin, C. Zhang, W. Guo, L. Han, and Y. Yuan, Nano-Micro Lett., 13: 76 (2021); https://doi.org/10.1007/s40820-021-00601-x
- Zhiqiang Lei, Yankang Wu, Liping Tang, and Jian Chen, Polymer. Composite, 43, Iss. 11: 8181 (2022); https://doi.org/10.1002/pc.26986
- M. Ghnimi, M. Mbarek, M. M. Almoneef, H. Ghalla, and K. Alimi, Theor. Chem. Acc., 139: 04 (2020); https://doi.org/10.1007/s00214-020-02619-7
- F.-D. Han, B. Yao, and Yu-jun Bai, J. Phys. Chem. C, 115: 8923 (2011); https://doi.org/10.1021/jp2007599
- G. Siemiaszko, J. Breczko, A. Hryniewicka, A. Ilnicka, K. H. Markiewicz, A. P. Terzyk, and M. E. Plonska-Brzezinska, Sci. Rep., 13: 6606 (2023); https://doi.org/10.1038/s41598-023-33874-w
- C. Wu, Y. Liu, and G. Zhao, ACS Appl. Nano Mater., 7, No. 8: 8926 (2024); https://doi.org/10.1021/acsanm.4c00438
- J. Macutkevic, I. Kranauskaite, J. Banys, S. Moseenkov, V. Kuznetsov, and O. Shenderova, J. Appl. Phys., 115: 213702 (2014); https://doi.org/10.1063/1.4880995
- L. Z. Boguslavskii, A. D. Rud', I. M. Kir'yan, N. S. Nazarova, and D. V. Vinnichenko, Surf. Eng. Appl. Elect., 2: 105 (2015); https://doi.org/10.3103/s1068375515020027
- L. Vovchenko, O. Lozitsky, L. Matzui, V. Oliynyk, V. Zagorodnii, and M. Skoryk, Mater. Chem. Phys., 240: 122234 (2020); https://doi.org/10.1016/j.matchemphys.2019.122234
- N. Abbas and H. T. Kim, Macromol. Res., 24: 1084 (2016); https://doi.org/10.1007/s13233-016-4152-z
- J. Robertson, Mater. Sci. Eng. R: Rep., 37: 129 (2002); https://doi.org/10.1016/S0927-796X(02)00005-0
- A. D. Alekseev, G. M. Zelinskaya, A. G. Ilinskii, I. G. Kaban, Yu. V. Lepeyeva, G. S. Mogilny, E. V. Ul'yanova, and A. P. Shpak, Fiz. Tekh. Vys. Davl., 3: 35 (2008).
- L. Vovchenko et al., Dielectric and Microwave Absorbing Properties of Epoxy Composites with Combined Fillers Nanocarbon/Inorganic Particles (Eds. Z. Bartul and J. Trenor) (New York: Advances in Nanotechnology–Nova Science Publishers: 2023).
- M. Y. Koledintseva, R. E. DuBroff, and R. Schwartz, Progress in Electromagnetics Research, 99: 131 (2009); https://doi.org/10.2528/PIER09091605
- W. Chao, H. Xingyi, W. Xinfeng, X. Liyuan, Y. Ke, and J. Pingkai, Nanoscale, 5, No. 9: 3847 (2013); https://doi.org/10.1039/C3NR00625E
- J. C. Dyre and T. B. Schroder, Rev. Mod. Phys., 72: 873 (2000); https://doi.org/10.1103/RevModPhys.72.873
- S. R. Elliott, Adv. Phys., 36, No. 2: 135 (1987); https://doi.org/10.1080/00018738700101971
- H. AlFannakh and S. S. Ibrahim, J. Mater. Sci.: Mater. Electron., 33: 24137 (2022); https://doi.org/10.1007/s10854-022-09092-x
- R. Schulz, V. Plantz, and D. Brush, IEEE Transactions on Electromagnetic Compatibility, 30, Iss. 3: 187 (1988); https://doi.org/10.1109/15.3297
- Singh Kuldeep, Ohlan Anil, and S. K. Dhawan, Nanocomposites—New Trends and Developments (Ed. Farzad Ebrahimi) (InTechOpen: 2012), p. 15–33.
- T. Shang, Q. Lu, J. Zhao, L. Chao, Y. Qin, N. Ren, Y. Yun, and G. Yun, Nanomaterials, 11: 1444 (2021); https://doi.org/10.3390/nano11061444
|