Go to main page

Issues

 / 

2025

 / 

Vol. 23 / 

No. 1

 



Download full version of the article (PDF format)

O.D. RUD, L.Yu. MATSUI, L.L. VOVCHENKO, I.M. KIRIAN, M.O. RUD, A.M. LAKHNYK, Yu.V. LEPEEVA, A.P. NAUMENKO, O.S. YAKOVENKO, Ya.Ye. PAZDRIY, and D.V. VINNYCHENKO

Synthesis, Structure and Electromagnetic Properties of Composite Materials Based on Carbon Nanospheres

135–148 (2025)

PACS numbers: 61.05.cp, 68.37.Og, 72.80.Tm, 77.22.Gm, 78.20.Ci, 78.40.Ri, 81.05.U-

The influence of carbon nanospheres (CNS) on the electromagnetic properties of composite materials is investigated. CNS are fabricated by high-frequency electrical-discharge treatment of propane–butane mixture in the ratio of 0.5:0.5. The structural characteristics of the synthesized materials are investigated through high-resolution electron microscopy and x-ray diffraction analysis. As revealed, the individual particles measured as of 20–40 nm in size assemble into agglomerates exhibiting a predominantly spherical morphology. Each particle is composed of multilayered, partially closed graphene shells with structural defects. As found, the synthesized material has graphite-like type of short-range atomic order. As shown, the addition of 10–20 wt.% of CNS into epoxy matrix results in increase of dielectric permittivity and shielding properties of composites in frequency range 26–40 GHz.

KEY WORDS: carbon nanospheres, permittivity, dielectric loss, electrical conductivity, electromagnetic shielding

DOI:  https://doi.org/10.15407/nnn.23.01.0135

REFERENCES
  1. J. Guo, X. Li, Z. Chen, J. Zhu, X. Mai, R. Wei, K. Sun, H. Liu, Y. Chen, N. Naik, and Z. Guo, J. Mater. Sci. Technol., 108: 64 (2022); https://doi.org/10.1016/j.jmst.2021.08.049
  2. Ján Kruželák, Andrea Kvasničáková, Klaudia Hložeková, and Ivan Hudec, Nanoscale Advances., 3, No. 1: 123 (2021); https://doi.org/10.1039/D0NA00760A
  3. A. Kaushal and V. Singh, J. Appl. Polym. Sci., 139: e51444 (2022); https://doi.org/10.1002/app.51444
  4. E. Mikinka and M. Siwak, J. Mater. Sci: Mater. Electron., 32: 24585 (2021); https://doi.org/10.1007/s10854-021-06900-8
  5. M. Zhang, H. Ling, T. Wang, Y. Jiang, G. Song, W. Zhao, L. Zhao, T. Cheng, Y. Xie, Y. Guo, W. Zhao, L. Yuan, A. Meng, and Z. Li, Nano-Micro Lett., 14: 157 (2022); https://doi.org/10.1007/s40820-022-00900-x
  6. R. Hashemi and G. J. Weng, Carbon, 96: 474 (2016); https://doi.org/10.1016/j.carbon.2015.09.103
  7. X. Xiong, H. Zhang, H. Lv, L. Yang, G. Liang, J. Zhang, Y. Lai, H.-W. Cheng, and R. Che, Carbon, 219: 118834 (2024); https://doi.org/10.1016/j.carbon.2024.118834
  8. R. Kumar, S. Sahoo, E. Joanni, R. K. Singh, W. K. Tan, K. K. Kar, and A. Matsuda, Carbon, 177: 304 (2021); https://doi.org/10.1016/j.carbon.2021.02.091
  9. B. Zhao, Y. Li, H. Ji, P. Bai, S. Wang, B. Fan, X. Guo, and R. Zhang, Carbon, 176: 411 (2021); https://doi.org/10.1016/j.carbon.2021.01.136
  10. G. Yang, M. Wang, J. Dong, F. Su, Y. Ji, C. Liu, and C. Shen, Compos. B Eng., 246: 110253 (2022); https://doi.org/10.1016/j.compositesb.2022.110253
  11. Y. Zhao, H. Zhang, X. Yang, H. Huang, G. Zhao, T. Cong, X. Zuo, Z. Fan, S. Yang, and L. Pan, Carbon, 171: 395 (2021); https://doi.org/10.1016/jcarbon.2020.09.036
  12. Y. Song, F. Yin, C. Zhang, W. Guo, L. Han, and Y. Yuan, Nano-Micro Lett., 13: 76 (2021); https://doi.org/10.1007/s40820-021-00601-x
  13. Zhiqiang Lei, Yankang Wu, Liping Tang, and Jian Chen, Polymer. Composite, 43, Iss. 11: 8181 (2022); https://doi.org/10.1002/pc.26986
  14. M. Ghnimi, M. Mbarek, M. M. Almoneef, H. Ghalla, and K. Alimi, Theor. Chem. Acc., 139: 04 (2020); https://doi.org/10.1007/s00214-020-02619-7
  15. F.-D. Han, B. Yao, and Yu-jun Bai, J. Phys. Chem. C, 115: 8923 (2011); https://doi.org/10.1021/jp2007599
  16. G. Siemiaszko, J. Breczko, A. Hryniewicka, A. Ilnicka, K. H. Markiewicz, A. P. Terzyk, and M. E. Plonska-Brzezinska, Sci. Rep., 13: 6606 (2023); https://doi.org/10.1038/s41598-023-33874-w
  17. C. Wu, Y. Liu, and G. Zhao, ACS Appl. Nano Mater., 7, No. 8: 8926 (2024); https://doi.org/10.1021/acsanm.4c00438
  18. J. Macutkevic, I. Kranauskaite, J. Banys, S. Moseenkov, V. Kuznetsov, and O. Shenderova, J. Appl. Phys., 115: 213702 (2014); https://doi.org/10.1063/1.4880995
  19. L. Z. Boguslavskii, A. D. Rud', I. M. Kir'yan, N. S. Nazarova, and D. V. Vinnichenko, Surf. Eng. Appl. Elect., 2: 105 (2015); https://doi.org/10.3103/s1068375515020027
  20. L. Vovchenko, O. Lozitsky, L. Matzui, V. Oliynyk, V. Zagorodnii, and M. Skoryk, Mater. Chem. Phys., 240: 122234 (2020); https://doi.org/10.1016/j.matchemphys.2019.122234
  21. N. Abbas and H. T. Kim, Macromol. Res., 24: 1084 (2016); https://doi.org/10.1007/s13233-016-4152-z
  22. J. Robertson, Mater. Sci. Eng. R: Rep., 37: 129 (2002); https://doi.org/10.1016/S0927-796X(02)00005-0
  23. A. D. Alekseev, G. M. Zelinskaya, A. G. Ilinskii, I. G. Kaban, Yu. V. Lepeyeva, G. S. Mogilny, E. V. Ul'yanova, and A. P. Shpak, Fiz. Tekh. Vys. Davl., 3: 35 (2008).
  24. L. Vovchenko et al., Dielectric and Microwave Absorbing Properties of Epoxy Composites with Combined Fillers Nanocarbon/Inorganic Particles (Eds. Z. Bartul and J. Trenor) (New York: Advances in Nanotechnology–Nova Science Publishers: 2023).
  25. M. Y. Koledintseva, R. E. DuBroff, and R. Schwartz, Progress in Electromagnetics Research, 99: 131 (2009); https://doi.org/10.2528/PIER09091605
  26. W. Chao, H. Xingyi, W. Xinfeng, X. Liyuan, Y. Ke, and J. Pingkai, Nanoscale, 5, No. 9: 3847 (2013); https://doi.org/10.1039/C3NR00625E
  27. J. C. Dyre and T. B. Schroder, Rev. Mod. Phys., 72: 873 (2000); https://doi.org/10.1103/RevModPhys.72.873
  28. S. R. Elliott, Adv. Phys., 36, No. 2: 135 (1987); https://doi.org/10.1080/00018738700101971
  29. H. AlFannakh and S. S. Ibrahim, J. Mater. Sci.: Mater. Electron., 33: 24137 (2022); https://doi.org/10.1007/s10854-022-09092-x
  30. R. Schulz, V. Plantz, and D. Brush, IEEE Transactions on Electromagnetic Compatibility, 30, Iss. 3: 187 (1988); https://doi.org/10.1109/15.3297
  31. Singh Kuldeep, Ohlan Anil, and S. K. Dhawan, Nanocomposites—New Trends and Developments (Ed. Farzad Ebrahimi) (InTechOpen: 2012), p. 15–33.
  32. T. Shang, Q. Lu, J. Zhao, L. Chao, Y. Qin, N. Ren, Y. Yun, and G. Yun, Nanomaterials, 11: 1444 (2021); https://doi.org/10.3390/nano11061444
Creative Commons License
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License
©2003 NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics, N.A.S.U.

E-mail: tatar@imp.kiev.ua Editorial staff contacts About collection User agreement