Go to journal home page

Issues

 / 

2025

 / 

Vol. 23 / 

No. 1

 



Download full version of the article (in PDF format)

Mohammed Ghazi KARIM and Reham Zaid HADI

Effect of Manganese Alloying on the Structural and Optical Properties of Titanium Oxide (TiO2) Films Prepared by Pulsed Laser Deposition (PLD) Method

109–122 (2025)

PACS numbers: 61.05.cp, 68.37.Ps, 78.20.Ci, 78.66.Li, 81.15.Fg, 81.16.Mk, 81.40.Tv

The pure membranes of TiO2 and manganese Mn are prepared in proportions of 5, 3, 1 using the method of pulsed laser deposition (PLD), as the sedimentation process is carried out on glass bases at room temperature, and a thickness of 200 nm; here, the effect of manganese distortion on the structural and optical properties is studied, as the results of x-ray diffraction show that all the membranes are prepared as having a quaternary based structure (tetragonal) as well as within the structural characteristics. The surface topography is studied with an atomic force microscope, and the results show a decrease in the values of surface roughness and mean square root of it with increasing the percentage of distortion; the values of the roughness rate are of 3.935–2.983 nm, but, through visual examinations, it is noted that the values of absorption and absorption coefficient increase with increasing the percentage of distortion, while the optical energy gap decreases with increasing distortion with manganese as 3–2.25 eV

KEY WORDS: titanium oxide, jamming, deposition, pulsed laser, optical properties, compositional properties

DOI:  https://doi.org/10.15407/nnn.23.01.0109

REFERENCES
  1. Milton Ohring, Materials Science of Thin Films. Ch 12. Mechanical Properties of Thin Films (Academic Press–Elsevier Inc.: 2002), p. 711–781; https://doi.org/10.1016/B978-012524975-1/50015-X
  2. Simon M. Sze, Yiming Li, and Kwok K. Ng, Physics of Semiconductor Devices (John Wiley & Sons: 2021).
  3. Adamo R. Petosa, Deb P. Jaisi, Ivan R. Quevedo, Menachem Elimelech, and Nathalie Tufenkji, Environmental Science & Technology, 44, No. 17: 6532 (2010); https://doi.org/10.1021/es100598h
  4. Meriem Boudiar, Faouzi Hanini, Abderrahmane Bouabellou, and Yassine Bouachiba, Journal of Sol–Gel Science and Technology, 107: No. 2: 1 (2023).
  5. M. N. Leung, D. Y. Leung, and K. Sumathy, Renewable and Sustainable Energy Reviews, 11, Iss. 3: 401 (2007); https://doi.org/10.1016/j.rser.2005.01.009
  6. R. D. Tentu and S. Basu, Curr. Opin. Electrochem., 5: 56 (2017).
  7. A. Soussi, A. Ait hssi, L. Boulkaddat, M. Boujnah, K. Abouabassi, R. Haounati, A. Asbayou, A. Elfanaoui, R. Markazi, A. Ihlal, K. Bouabid, N. El Biaze, Computational Condensed Matter, 29: e00606 (2021); https://doi.org/10.1016/j.cocom.2021.e00606
  8. Swagata Banerjee, Dionysios Dionysiou, and Suresh Pillai, Applied Catalysis B: Environmental, 176–177: 396 (2015); https://doi.org/10.1016/j.apcatb.2015.03.058
  9. I. D. Devadoss and S. M. Muthukumaran, Phys. E: Low-Dimens. Syst. Nanostruct., 72: 111 (2015); https://doi.org/10.1016/j.physe.2015.04.022
  10. Ming Yin, Chun-Kwei Wu, Yongbing Lou, Clemens Burda, Jeffrey T. Koberstein, Yimei Zhu, and Stephen O'Brien, J. Am. Chem. Soc., 127, Iss. 26: 9506 (2005); https://doi.org/10.1021/ja050006u
  11. Houda Ennaceri, Mourad Boujnah, Abdelhafed Taleb, Asmae Khaldoun, Rodrigo Sáez-Araoz, Ahmed Ennaoui, Abdallah El Kenz, and Abdelilah Benyoussef, Int. J. Hydrogen Energy, 42, Iss. 30: 19467 (2017); https://doi.org/10.1016/j.ijhydene.2017.06.015
  12. A. Arunachalam, S. Dhanapandian, and C. Manoharan, J. Mater. Sci. Mater. Electron., 27: 659 (2016); https://doi.org/10.1007/s10854-015-3802-9
  13. Shuo Wang, Liming Bai, and Xinling Ao, RSC Adv., 8: 36745 (2018); https://doi.org/10.1039/C8RA06778C
  14. A. Arunachalam, S. Dhanapandian, C. Manoharan, and R. Sridhar, Acta Mol. Biomol. Spectrosc., 149: 904 (2015); https://doi.org/10.1016/j.saa.2015.05.014
  15. Subodh Srivastava, Sumit Kumar, V. N. Singh, M. Singh, and Y. K. Vijay, Int. J. Hydrogen Energy, 36: 6343 (2011); https://doi.org/10.1016/j.ijhydene.2011.01.141
  16. A. Elfanaoui, E. Elhamri, L. Boulkaddat, A. Ihlal, K. Bouabid, L. Laanab, A. Taleb, and X. Portier, Int. J. Hydrogen Energy, 36: 4130 (2011); https://doi.org/10.1016/j.ijhydene.2010.07.057
  17. Prabitha B. Nair, V. B. Justinvictor, Georgi P. Daniel, K. Joy, K. C. James Raju, David Devraj Kumar, and P. V. Thomas, Prog. Nat. Sci.: Materials International, 24, Iss. 3: 218 (2014); https://doi.org/10.1016/j.pnsc.2014.05.010
  18. Alexandre Bayart, Zhen Mian Shao, Anthony Ferri, Pascal Roussel, Rachel Desfeux, and Sébastien Saitzek, RSC Adv., 6: 32994 (2016); https://doi.org/10.1039/C6RA01225F
  19. Nandang Mufti, Ifa K. R. Laila, Hartatiek, and Abdulloh Fuad, J. Phys. Conf., 853: 012035 (2017); https://doi.org/10.1088/1742-6596/853/1/012035
  20. Jianying Shi, Jun Chen, Zhaochi Feng, Tao Chen, Yuxiang Lian, Xiuli Wang, and Can Li, J. Phys. Chem., 111, Iss. 2: 693 (2017); https://doi.org/10.1021/jp065744z
  21. A. Arunachalam, S. Dhanapandian, C. Manoharan, and G. Sivakumar, Spectrochim. Acta Mol. Biomol. Spectrosc., 138: 105 (2015); https://doi.org/10.1016/j.saa.2014.11.016
  22. Abdelmalek Kharoubi, Amar Bouaza, Bedhiaf Benrabah, Abdelkader Ammari, Hadj Benhebal, Belkacem Khiali, and Cherifa Dalache, Journal of Molecular and Engineering Materials, 06, No. 01n02: 1850001 (2018); https://doi.org/10.1142/S2251237318500016
  23. S. Asha Bhandarkar, Prathvi, Akshayakumar Kompa, M. S. Murari, Dhananjaya Kekuda, and Rao K. Mohan, Optical Materials, 118: 111254 (2021); https://doi.org/10.1016/j.optmat.2021.111254
  24. Ahmed Mahmood and Mandar Chitre, OCEANS 2015–Genova (Genova, Italy, 2015), p. 1; https://doi.org/10.1109/OCEANS-Genova.2015.7271550
  25. Xiaoyang Yang, Yuxin Min, Sibai Li, Dawei Wang, Zongwei Mei, Jun Liang, and Feng Pan, Catalysis Science and Technology, 8: 1357 (2018); https://doi.org/10.1039/C7CY02614E
  26. B. L. Theraja, Modern Physics (S. Chandand Company: 1987), p. 170.
  27. Mohammad Reza Golobostanfard and Hossein Abdizadeh, Ceram. Int., 38: 5843 (2012); https://doi.org/10.1016/j.ceramint.2012.04.034
  28. A. M. Nawar, N. A. Aal. N. Said, F. El-Tantawy, and F. Yakuphanoglu, IOSR–Jap, 6, No. 4: 17 (2014); https://doi.org/10.9790/4861-06421722
  29. N. Najlaa and T. Latif Jamal M. Rzaij, Journal of University of Anbar for Pure Science (JUAPS), 4, No. 1: 43 (2020); https://doi.org/10.37652/juaps.2022.172320
  30. D. Komaraiah, E. Radha, J. Sivakumar, M. V. Ramana Reddy, and R. Sayanna, Opt. Mater., 108: 110401 (2020); https://doi.org/10.1016/j.optmat.2020.110401
  31. P. Dulian, W. Nachit, J. Jaglarz, P. Zięba, J. Kanak, and W. Żukowski, Opt. Mater., 90: 264 (2019); https://doi.org/10.1016/j.optmat.2019.02.041
  32. V. R. Akshay, B. Arun, Guruprasad Mandal, and M. Vasundhara, Phys. Chem. Chem. Phys., 21: 12991 (2019); https://doi.org/10.1039/C9CP01351B
Creative Commons License
This article is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License
©2003 NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the N.A.S. of Ukraine.

E-mail: tatar@imp.kiev.ua Editorial Board Phones and Address About Collection User Agreement