Go to journal home page

Issues

 / 

2025

 / 

Vol. 23 / 

No. 1

 



Download full version of the article (in PDF format)

Tayeb SAOUD, Abdallah DIHA, Said BENRAMACHE, and Amira SBAIHI

Study of the Structural and Optical Properties of Cu and Co Co-Doped ZnO Thin Films

89–99 (2025)

PACS numbers: 61.05.cp, 78.20.Ci, 78.66.Li, 78.67.-n, 81.07.Bc, 81.15.Rs, 81.40.Tv

The Co and Cu co-doped thin ZnO films are successfully deposited on glass substrate by spray pneumatic method. In this work, it is obtained a semiconductor as Co and Cu co-doped thin ZnO films with good optical and electrical properties. XRD patterns of the Co and Cu co-doped thin ZnO films indicate that the obtained thin films are hexagonal ZnO (wurtzite, JCPDS 36-1451). Structural, optical, and electrical properties of thin films are studied as functions of atomic percentage (Co/Cu) co-doping thin ZnO films. It is fixed the doping level of atomic percentage of 2% Cu and various Co-doping atomic percentage (1.5%, 2%, 3%, 5%, 7%) in order to find out the influence of Co/Cu co-doping on thin ZnO film properties

KEY WORDS: ZnO, thin films, Co and Cu co-doping, spray pneumatic method

DOI:  https://doi.org/10.15407/nnn.23.01.0089

REFERENCES
  1. E. Asikuzun, O. Ozturk, L. Arda, and C. Terzioglu, J. Molec. Struct., 1165: 1 (2018); https://doi.org/10.1016/j.molstruc.2018.03.053
  2. Y. Aoun, M. Marrakchi, S. Benramache, B. Benhaoua, S. Lakel, and A. Cheraf, Mater. Res., 21: e20170681 (2018); https://doi.org/10.1590/1980-5373-MR-2017-0681
  3. Y. Ammaih, A. Abderrazak, B. Hartiti, A. Ridah, P. Thevenin, and M. Siadat, Opt. Quant. Electro., 46: 229 (2014); https://doi.org/10.1007/s11082-013-9757-2
  4. Z. K. Heiba and L. Arda, J. Molec. Struct., 1022: 167 (2012); https://doi.org/10.1016/j.molstruc.2012.04.091
  5. S. Benramache, Annals of West University of Timisoara - Physics, 61: 64 (2019); https://doi.org/10.2478/awutp-2019-0006
  6. S. Benramache, F. Chabane, and A. Arif, Materials and Geoenvironment, 67: 35 (2020); https://doi.org/10.2478/rmzmag-2020-0001
  7. E. Asikuzun, O. Ozturk, and L. Arda, J. Mater. Sci.: Mater. Electron., 28: 14314 (2017); https://doi.org/10.1007/s10854-017-7291-x
  8. A. Guler, L. Arda, N. Dogan, and C. E. Boyraz, Ceram. Int., 45: 1737 (2019); https://doi.org/10.1016/j.ceramint.2018.10.056
  9. C. Boyraz, N. Dogan, and L. Arda, Ceram. Int., 43: 15989 (2017); https://doi.org/10.1016/j.ceramint.2017.08.184
  10. A. Diha, S. Benramache, and L. Fellah, J. Nano- Electron. Phys., 11: 03002 (2019); https://doi.org/10.21272/jnep.11(3).03002
  11. P. Cao and Y. Bai, Adv. Mater. Res., 774–776: 964 (2013); https://doi.org/10.4028/www.scientific.net/AMR.774-776.964
  12. C. Boyraz, N. Dogan, and L. Arda, Ceram. Int., 43: 15986 (2017); https://doi.org/10.1016/j.ceramint.2017.08.184
  13. A. Javadian and M. R. Fadavieslam, J. Mater. Sci.: Mater. Electron., 33: 23362 (2022); https://doi.org/10.1007/s10854-022-09098-5
  14. H. Hakkoum, A. Moumen, M. Ghougali, N. Sengouga, and E. Comini, J. Mater. Sci.: Mater. Electron., 33: 26604 (2022); https://doi.org/10.1007/s10854-022-09336-w
  15. S. Abed, H. Bougharraf, K. Bouchouit, Z. Sofiani, B. Derkowska-Zielinska, M. S. Aida, and B. Sahraoui, Superlatt. Microstruct., 85: 370 (2015); https://doi.org/10.1016/j.spmi.2015.06.008
  16. D. Miao, H. Hu, and L. Gan, J. Alloys Compounds, 639: 400 (2015); https://doi.org/10.1016/j.jallcom.2015.03.189
  17. S. Benramache, Y. Aoun, R. Gacema, and H. Mourghad, Nanosistemi, Nanomateriali, Nanotehnologii, 19, Iss. 1: 147 (2021); https://doi.org/10.15407/nnn.19.01.147
Creative Commons License
This article is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License
©2003 NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the N.A.S. of Ukraine.

E-mail: tatar@imp.kiev.ua Editorial Board Phones and Address About Collection User Agreement