NNN 2025, vol 23, issue 1, p.61-68 Abstract
Go to journal homepage

Issues

 / 

2025

 / 

vol. 23 / 

issue 1

 



Download the full version of the article (in PDF format)

Jasim ALEBRAHIM, Mohammad Nour ALKHODER, and Reem TULAIMAT

Preparation and Characterization of the MCM-41 Nanocatalyst

61–68 (2025)

PACS numbers: 61.72.Dd, 68.37.Hk, 68.43.-h, 78.30.Hv, 81.05.Rm, 82.30.Vy, 82.75.Fq

In this research scope, the mesoporous nanocatalyst MCM-41 is synthesized using a direct hydrothermal approach. The process initiated with the utilization of sodium metasilicate (Na2SiO3⋅5H2O) as the source of silica and cetyltrimethylammonium bromide (CTAB) playing a pivotal role as a surfactant and template. The hydrothermal reactor is employed, maintaining a temperature of 120°C for the synthesis. The prepared catalysts are characterized through a comprehensive analysis involving Fourier-transform infrared spectroscopy, scanning electron microscopy, and x-ray diffraction. The outcomes of this endeavour yield catalyst particles at the nanoscale, with the majority of them exhibiting dimensions of less than 100 nanometres. Scanning electron microscopy images provide visual evidence of the formation of a uniform and homogeneous mesoporous material. Furthermore, XRD results conclusively verify the attainment of nanoscale dimensions. This achievement is quantitatively determined through the Scherrer equation—a well-established method for estimating crystallite size based on XRD data. This research underscores the successful preparation of MCM-41 nanocatalysts with exceptional mesoporous properties, making them potentially valuable for various applications

KEY WORDS: adsorption, zeolites, mesoporous silica, MCM-41, catalysis

DOI:  https://doi.org/10.15407/nnn.23.01.0061

REFERENCES
  1. A. Taguchi and F. Schüth, Microporous Mesoporous Mater., 77, Iss. 1: 1 (2005); https://doi.org/10.1016/j.micromeso.2004.06.030
  2. B. Zdravkov, J. Čermák, M. Sefara, and J. Janků, Cent. Eur. J. Chem., 5, Iss. 2: 385 (2007); https://doi.org/10.2478/s11532-007-0017-9
  3. T. Armbruster and M. E. Gunter, Rev. Mineral. Geochem., 45, Iss. 1: 1 (2001); https://doi.org/10.2138/rmg.2001.45.1
  4. G. Øye, W. R. Glomm, T. Vrålstad, S. Volden, H. Magnusson, M. Stöcker, and J. Sjöblom, Adv. Colloid Interface Sci., 123, Iss. 1: 17 (2006); https://doi.org/10.1016/j.cis.2006.05.010
  5. M. B. Bahari, S. N. Bukhari, L. N. Jun, and H. D. Setiabudi, Mater. Today, 42, Iss. 1: 33 (2021); https://doi.org/10.1016/j.matpr.2020.09.144
  6. D. S. Lee and T. K. Liu, J. Sol–Gel Sci. Technol., 24, Iss. 1: 69 (2002); https://doi.org/10.1023/A:1015165600804
  7. K. Wu, B. Li, C. Ha, and J. Liu, Appl. Catal. A, 479, Iss. 5: 70 (2014); https://doi.org/10.1016/j.apcata.2014.04.004
  8. P. A. Mangrulkar, S. P. Kamble, J. Meshram, and S. S. Rayalu, J. Hazard. Mater., 160, Iss. 2–3: 414 (2008); https://doi.org/10.1016/j.jhazmat.2008.03.013
  9. S. Olveira, S. P. Forster, and S. Seeger, J. Nanotechnol., 2014, Iss. 3: 1 (2014); https://doi.org/10.1155/2014/324089
  10. A. Zuliani, F. Ivars, and R. Luque, Chem. Cat. Chem., 10, Iss. 9: 1968 (2018); https://doi.org/10.1002/cctc.201701712
  11. R. K. Rana and B. Viswanathan, Catal. Lett., 52, Iss. 1: 25 (1998); https://doi.org/10.1023/A:1019019403375
  12. T. S. Reddy and M. C. S. Kumar, Ceram. Int., 42, Iss. 10: 12262 (2016); https://doi.org/10.1016/j.ceramint.2016.04.172
Creative Commons License
This article is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License
©2003 NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine.

E-mail: tatar@imp.kiev.ua Phones and address of the editorial office About the collection User agreement