Download the full
version of the article (in PDF format)
Fatemeh MOLLAAMIN
Stating the Progress of Mn-Based Nanohybrid Materials Containing GaN/AlGaN/InGaN Towards Remarkable Improvement in Hydrogen Storage
37–60 (2025)
PACS numbers: 68.43.Bc, 71.15.Mb, 71.15.Nc, 73.20.Hb, 76.60.-k, 88.30.R-, 88.40.fh
A comprehensive investigation on hydrogen grabbing by heteroclusters of Mn-doped GaN, AlGaN, InGaN is carried out using DFT computations at the CAM–B3LYP–D3/6–311G(d,p) level of theory. The notable fragile signal intensity close to the parallel edge of the nanocluster sample might be owing to manganese binding-induced non-spherical distribution of Mn@GaN, Mn@AlGaN or Mn@InGaN heteroclusters. The hypothesis of the energy-adsorption phenomenon is confirmed by density distributions of CDD, TDOS/PDOS/OPDOS, and electron-localization function (ELF) for GaN and its alloys. Based on TDOS, the excessive growth technique on doping manganese is a potential approach to designing high-efficiency hybrid semi-polar gallium nitride-based devices in a long-wavelength zone. A vaster jointed area engages by an isosurface map for Mn-doping GaN, AlGaN, and InGaN towards formation of nanocomposites of Mn@GaN–H, Mn@AlGaN–H, and Mn@InGaN–H after hydrogen adsorption due to labelling atoms of N4, Mn5, H18, respectively. Therefore, it can be considered that manganese in the functionalized Mn@GaN, Mn@AlGaN or Mn@InGaN might have more impressive sensitivity for accepting the electrons in the process of hydrogen adsorption. Furthermore, Mn@GaN, Mn@AlGaN or Mn@InGaN are potentially advantageous for certain high-frequency applications requiring solar cells for energy storage. The advantages of manganese over GaN, AlGaN, or InGaN include its higher electron and hole mobility, allowing manganese-doping devices to operate at higher frequencies than non-doping devices
KEY WORDS: solar cells, hydrogen adsorption, energy storage, aluminium–gallium nitride, indium gallium nitride, first-principles study
DOI: https://doi.org/10.15407/nnn.23.01.0037
REFERENCES
- M. L. Nakarmi, N. Nepal, J. Y. Lin, and H. X. Jiang, Appl. Phys. Lett, 94, Iss. 9: 091903 (2009); https://doi.org/10.1063/1.3094754
- K. B. Nam, J. Li, M. L. Nakarmi, J. Y. Lin, and H. X. Jiang, Appl. Phys. Lett., 84, Iss. 25: 5264 (2004); https://doi.org/10.1063/1.1765208
- J. P. Zhang, X. Hu, Y. Bilenko, J. Deng, A. Lunev, M. S. Shur, R. Gaska, M. Shatalov, J. W. Yang, and M. A. Khan, Appl. Phys. Lett, 85, Iss. 23: 5532 (2004); https://doi.org/10.1063/1.1831557
- Z. G. Shao, D. J. Chen, H. Lu, R. Zhang, D. P. Cao, W. J. Luo, Y. D. Zheng, L. Li and Z. H. Li, IEEE Electron Device Lett., 35, Iss. 25: 372 (2014); https://doi.org/10.1109/LED.2013.2296658
- T. Kinoshita, T. Obata, H. Yanagi, and S.-I. Inoue, Appl. Phys. Lett., 102, Iss. 25: 012105 (2013); https://doi.org/10.1063/1.4773594
- S. Liu, C. Ye, X. Cai, S. Li, W. Lin, and J. Kang, Appl. Phys. A, 122, Iss. 5: 527 (2016); https://doi.org/10.1007/s00339-016-0073-0
- John Simon, Vladimir Protasenko, Chuanxin Lian, Huili Xing, and Debdeep Jena, Science, 327, Iss. 5961: 60 (2010); https://doi.org/10.1126/science.1183226
- T. M. Al tahtamouni, J. Y. Lin, and H. X. Jiang, AIP Adv, 4, Iss. 4: 047122 (2014); https://doi.org/10.1063/1.4871996
- J.-K. Sheu, P.-C. Chen, C.-L. Shin, M.-L. Lee, P.-H. Liao, and W.-C. Lai, Solar Energy Materials and Solar Cells, 157, Iss. 6: 727 (2016); https://doi.org/10.1016/j.solmat.2016.07.047
- J.-K. Sheu, F.-W. Huang, C.-H. Lee, M.-L. Lee, Y.-H. Yeh, P.-C. Chen, and W.-C. Lai, Appl. Phys. Lett, 103, Iss. 6: 063906 (2013); https://doi.org/10.1063/1.4818340
- A. Martí, C. Tablero, E. Antolín, A. Luque, R. P. Campion, and S. V. Novikov, and C. T. Foxon, Solar Energy Materials and Solar Cells, 93, Iss. 5: 641(2009); https://doi.org/10.1016/j.solmat.2008.12.031
- J. Wu, W. Walukiewicz, K. M. Yu, W. Shan, J. W. Ager, E. E. Haller, H. Lu, W. J. Schaff, W. K. Metzger, and S. Kurtz, J. Appl. Phys, 94, Iss. 10: 6477 (2003); https://doi.org/10.1063/1.1618353
- J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager, E. E. Haller, H. Lu, and W. J. Schaff, Appl. Phys. Lett, 80, Iss. 25: 4741 (2002); https://doi.org/10.1063/1.1489481
- R. Singh, D. Doppalapudi, T. D. Moustakas, and L. T. Romano, Appl. Phys. Lett, 70, Iss. 9: 1089 (1997); https://doi.org/10.1063/1.118493
- D.-H. Lien, Y.-H. Hsiao, S.-G. Yang, M.-L. Tsai, T.-C. Wei, S.-C. Lee, and J.-H. He, Nano Energy, 11: 104 (2015); https://doi.org/10.1016/j.nanoen.2014.10.013
- Y. Kuwahara, T. Fujii, Y. Fujiyama, T. Sugiyama, M. Iwaya, T. Takeuchi, S. Kamiyama, I. Akasaki, and H. Amano, Appl. Phys. Express, 3, Iss. 11: 111001 (2010); https://doi.org/10.1143/APEX.3.111001
- N. G. Young, R. M. Farrell, Y. L. Hu, Y. Terao, M. Iza, S. Keller, S. P. DenBaars, S. Nakamura, and J. S. Speck, Appl. Phys. Lett., 103, Iss. 17: 173903 (2013); https://doi.org/10.1063/1.4826483
- C. J. Neufeld, S. C. Cruz, R. M. Farrell, M. Iza, J. R. Lang, S. Keller, S. Nakamura, S. P. DenBaars, J. S. Speck, and U. K. Mishra, Appl. Phys. Lett., 98, Iss. 24: 243507 (2011); https://doi.org/10.1063/1.3595487
- H. Shen and B. Maes, Opt. Express, 19, Suppl. 6: A1202 (2011); https://doi.org/10.1364/OE.19.0A1202
- K. X. Wang, Z. Yu, V. Liu, Y. Cui, and S. Fan, Nano Lett., 12, Iss. 3: 1616 (2012); https://doi.org/10.1021/nl204550q
- X. Meng, E. Drouard, G. Gomard, R. Peretti, A. Fave, and C. Seassal, Opt. Express, 20, Iss. S5: A560 (2012); https://doi.org/10.1364/OE.20.00A560
- A. Abass, K. Q. Le, A. Alu, M. Burgelman, and B. Maes, Phys. Rev. B, 85, Iss. 11: 115449 (2012); https://doi.org/10.1103/PhysRevB.85.115449
- R. Chriki, A. Yanai, J. Shappir, and U. Levy, Opt. Express, 21, Iss. 103: A382 (2013); https://doi.org/10.1364/OE.21.00A382
- W.-C. Hsu, J. K. Tong, M. S. Branham, Y. Huang, S. Yerci, S. V. Boriskina, and G. Chen, Opt. Commun., 377: 52 (2016); https://doi.org/10.1016/j.optcom.2016.04.055
- O. Isabella, R. Vismara, A. Ingenito, N. Rezaei, and M. Zeman, Opt. Express, 24, Iss. 6: A708 (2016); https://doi.org/10.1364/OE.24.00A708
- J. Lin, Y. Yu, Z. Xu, F. Gao, Z. Zhang, F. Zeng, W. Wang, and G. Li, J. Power Sources, 450: 227578 (2020); https://doi.org/10.1016/j.jpowsour.2019.227578
- U. K. Kumawat, K. Kumar, P. Bhardwaj, and A. Dhawan, Energy Science and Engineering, 7, Iss. 6: 2469 (2019); https://doi.org/10.1002/ese3.436
- P. E. Blöchl, Phys. Rev. B, 50, Iss. 24: 17953 (1994); https://doi.org/10.1103/PhysRevB.50.17953
- J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett, 77, Iss. 24: 3865 (1996); https://doi.org/10.1103/PhysRevLett.77.3865
- P. Ziesche, S. Kurth, and J. P. Perdew, Comput. Mater. Sci., 11: 122 (1998); https://doi.org/10.1016/S0927-0256(97)00206-1
- M. Arrigoni and G. K. H. Madsen, Comput. Mater. Sci., 156: 354 (2019); https://doi.org/10.1016/j.commatsci.2018.10.005
- P. Hohenberg and W. Kohn, Phys. Rev. B, 136, Iss. 3B: B864 (1964); https://doi.org/10.1103/PhysRev.136.B864
- W. Kohn and L. J. Sham, Phys. Rev., 140, Iss. 4A: A1133 (1965); https://doi.org/10.1103/PhysRev.140.A1133
- A. D. Becke, J. Chem. Phys., 98, Iss. 7: 5648 (1993); https://doi.org/10.1063/1.464913
- C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B, 37, Iss. 2: 785 (1988); https://doi.org/10.1103/PhysRevB.37.785
- K. Kim and K. D. Jordan, J. Phys. Chem, 98, Iss. 40: 10089 (1994); https://doi.org/10.1021/j100091a024
- P. J. Stephens, F. J. Devlin, C. F. Chabalowski, and M. J. Frisch, J. Phys. Chem., 98, Iss. 45: 11623 (1994); https://doi.org/10.1021/j100096a001
- F. Mollaamin and M. Monajjemi, J. Clust. Sci., 34, Iss .6: 2901 (2023); https://doi.org/10.1007/s10876-023-02436-5
- F.Mollaamin and M. Monajjemi, Int. J. Quantum Chem., 124, Iss. 2: e27348 (2024); https://doi.org/10.1002/qua.27348
- F. Mollaamin and M. Monajjemi, Molecular Simulation, 49, Iss. 4: 365 (2023); https://doi.org/10.1080/08927022.2022.2159996
- S. H. Vosko, L. Wilk, and M. Nusair, Can. J. Phys., 58, Iss. 8: 1200 (1980); https://doi.org/10.1139/p80-159
- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian 16, Revision C.01 (Wallingford, CT: Gaussian, Inc.: 2016).
- R. Dennington, T. A. Keith, and J. M. Millam, GaussView, Version 6.06.16 (Shawnee Mission, KS: Semichem Inc.: 2016).
- Z. Xu, C. Qin, Y. Yu, G. Jiang, and L. Zhao, AIP Advances, 14, Iss. 8: 055114 (2024); https://doi.org/10.1063/5.0208082
- A. D. Becke and K. E. Edgecombe, J. Chem. Phys., 92, Iss. 9: 5397 (1990); https://doi.org/10.1063/1.458517
- S. N. Steinmann, Y. Mob, and C. Corminboeuf, Phys. Chem. Chem. Phys., 13, Iss. 46: 20584 (2011); https://doi.org/10.1039/C1CP21055F
- L. Tian and C. Fei-Wu, Acta Phys. Chim. Sin., 27, Iss. 12: 2786 (2011); https://doi.org/10.3866/PKU.WHXB20112786
- A. Savin, O. Jepsen, J. Flad, O. K. Andersen, H. Preuss, and H. G. von Schnering, Angew. Chem. Int. Edit. Engl., 31, Iss. 2: 187 (1992); https://doi.org/10.1002/anie.199201871
- U. Sohail, F. Ullah, N. H. Binti Zainal Arfan, M. H. S. Abdul Hamid, T. Mahmood, N. S. Sheikh, and K. Ayub, Molecules, 28, Iss. 10: 4060 (2023); https://doi.org/10.3390/molecules28104060
|