Go to journal homepage

Issues

 / 

2025

 / 

vol. 23 / 

issue 1

 



Download the full version of the article (in PDF format)

Fatemeh MOLLAAMIN

Stating the Progress of Mn-Based Nanohybrid Materials Containing GaN/AlGaN/InGaN Towards Remarkable Improvement in Hydrogen Storage

37–60 (2025)

PACS numbers: 68.43.Bc, 71.15.Mb, 71.15.Nc, 73.20.Hb, 76.60.-k, 88.30.R-, 88.40.fh

A comprehensive investigation on hydrogen grabbing by heteroclusters of Mn-doped GaN, AlGaN, InGaN is carried out using DFT computations at the CAM–B3LYP–D3/6–311G(d,p) level of theory. The notable fragile signal intensity close to the parallel edge of the nanocluster sample might be owing to manganese binding-induced non-spherical distribution of Mn@GaN, Mn@AlGaN or Mn@InGaN heteroclusters. The hypothesis of the energy-adsorption phenomenon is confirmed by density distributions of CDD, TDOS/PDOS/OPDOS, and electron-localization function (ELF) for GaN and its alloys. Based on TDOS, the excessive growth technique on doping manganese is a potential approach to designing high-efficiency hybrid semi-polar gallium nitride-based devices in a long-wavelength zone. A vaster jointed area engages by an isosurface map for Mn-doping GaN, AlGaN, and InGaN towards formation of nanocomposites of Mn@GaN–H, Mn@AlGaN–H, and Mn@InGaN–H after hydrogen adsorption due to labelling atoms of N4, Mn5, H18, respectively. Therefore, it can be considered that manganese in the functionalized Mn@GaN, Mn@AlGaN or Mn@InGaN might have more impressive sensitivity for accepting the electrons in the process of hydrogen adsorption. Furthermore, Mn@GaN, Mn@AlGaN or Mn@InGaN are potentially advantageous for certain high-frequency applications requiring solar cells for energy storage. The advantages of manganese over GaN, AlGaN, or InGaN include its higher electron and hole mobility, allowing manganese-doping devices to operate at higher frequencies than non-doping devices

KEY WORDS: solar cells, hydrogen adsorption, energy storage, aluminium–gallium nitride, indium gallium nitride, first-principles study

DOI:  https://doi.org/10.15407/nnn.23.01.0037

REFERENCES
  1. M. L. Nakarmi, N. Nepal, J. Y. Lin, and H. X. Jiang, Appl. Phys. Lett, 94, Iss. 9: 091903 (2009); https://doi.org/10.1063/1.3094754
  2. K. B. Nam, J. Li, M. L. Nakarmi, J. Y. Lin, and H. X. Jiang, Appl. Phys. Lett., 84, Iss. 25: 5264 (2004); https://doi.org/10.1063/1.1765208
  3. J. P. Zhang, X. Hu, Y. Bilenko, J. Deng, A. Lunev, M. S. Shur, R. Gaska, M. Shatalov, J. W. Yang, and M. A. Khan, Appl. Phys. Lett, 85, Iss. 23: 5532 (2004); https://doi.org/10.1063/1.1831557
  4. Z. G. Shao, D. J. Chen, H. Lu, R. Zhang, D. P. Cao, W. J. Luo, Y. D. Zheng, L. Li and Z. H. Li, IEEE Electron Device Lett., 35, Iss. 25: 372 (2014); https://doi.org/10.1109/LED.2013.2296658
  5. T. Kinoshita, T. Obata, H. Yanagi, and S.-I. Inoue, Appl. Phys. Lett., 102, Iss. 25: 012105 (2013); https://doi.org/10.1063/1.4773594
  6. S. Liu, C. Ye, X. Cai, S. Li, W. Lin, and J. Kang, Appl. Phys. A, 122, Iss. 5: 527 (2016); https://doi.org/10.1007/s00339-016-0073-0
  7. John Simon, Vladimir Protasenko, Chuanxin Lian, Huili Xing, and Debdeep Jena, Science, 327, Iss. 5961: 60 (2010); https://doi.org/10.1126/science.1183226
  8. T. M. Al tahtamouni, J. Y. Lin, and H. X. Jiang, AIP Adv, 4, Iss. 4: 047122 (2014); https://doi.org/10.1063/1.4871996
  9. J.-K. Sheu, P.-C. Chen, C.-L. Shin, M.-L. Lee, P.-H. Liao, and W.-C. Lai, Solar Energy Materials and Solar Cells, 157, Iss. 6: 727 (2016); https://doi.org/10.1016/j.solmat.2016.07.047
  10. J.-K. Sheu, F.-W. Huang, C.-H. Lee, M.-L. Lee, Y.-H. Yeh, P.-C. Chen, and W.-C. Lai, Appl. Phys. Lett, 103, Iss. 6: 063906 (2013); https://doi.org/10.1063/1.4818340
  11. A. Martí, C. Tablero, E. Antolín, A. Luque, R. P. Campion, and S. V. Novikov, and C. T. Foxon, Solar Energy Materials and Solar Cells, 93, Iss. 5: 641(2009); https://doi.org/10.1016/j.solmat.2008.12.031
  12. J. Wu, W. Walukiewicz, K. M. Yu, W. Shan, J. W. Ager, E. E. Haller, H. Lu, W. J. Schaff, W. K. Metzger, and S. Kurtz, J. Appl. Phys, 94, Iss. 10: 6477 (2003); https://doi.org/10.1063/1.1618353
  13. J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager, E. E. Haller, H. Lu, and W. J. Schaff, Appl. Phys. Lett, 80, Iss. 25: 4741 (2002); https://doi.org/10.1063/1.1489481
  14. R. Singh, D. Doppalapudi, T. D. Moustakas, and L. T. Romano, Appl. Phys. Lett, 70, Iss. 9: 1089 (1997); https://doi.org/10.1063/1.118493
  15. D.-H. Lien, Y.-H. Hsiao, S.-G. Yang, M.-L. Tsai, T.-C. Wei, S.-C. Lee, and J.-H. He, Nano Energy, 11: 104 (2015); https://doi.org/10.1016/j.nanoen.2014.10.013
  16. Y. Kuwahara, T. Fujii, Y. Fujiyama, T. Sugiyama, M. Iwaya, T. Takeuchi, S. Kamiyama, I. Akasaki, and H. Amano, Appl. Phys. Express, 3, Iss. 11: 111001 (2010); https://doi.org/10.1143/APEX.3.111001
  17. N. G. Young, R. M. Farrell, Y. L. Hu, Y. Terao, M. Iza, S. Keller, S. P. DenBaars, S. Nakamura, and J. S. Speck, Appl. Phys. Lett., 103, Iss. 17: 173903 (2013); https://doi.org/10.1063/1.4826483
  18. C. J. Neufeld, S. C. Cruz, R. M. Farrell, M. Iza, J. R. Lang, S. Keller, S. Nakamura, S. P. DenBaars, J. S. Speck, and U. K. Mishra, Appl. Phys. Lett., 98, Iss. 24: 243507 (2011); https://doi.org/10.1063/1.3595487
  19. H. Shen and B. Maes, Opt. Express, 19, Suppl. 6: A1202 (2011); https://doi.org/10.1364/OE.19.0A1202
  20. K. X. Wang, Z. Yu, V. Liu, Y. Cui, and S. Fan, Nano Lett., 12, Iss. 3: 1616 (2012); https://doi.org/10.1021/nl204550q
  21. X. Meng, E. Drouard, G. Gomard, R. Peretti, A. Fave, and C. Seassal, Opt. Express, 20, Iss. S5: A560 (2012); https://doi.org/10.1364/OE.20.00A560
  22. A. Abass, K. Q. Le, A. Alu, M. Burgelman, and B. Maes, Phys. Rev. B, 85, Iss. 11: 115449 (2012); https://doi.org/10.1103/PhysRevB.85.115449
  23. R. Chriki, A. Yanai, J. Shappir, and U. Levy, Opt. Express, 21, Iss. 103: A382 (2013); https://doi.org/10.1364/OE.21.00A382
  24. W.-C. Hsu, J. K. Tong, M. S. Branham, Y. Huang, S. Yerci, S. V. Boriskina, and G. Chen, Opt. Commun., 377: 52 (2016); https://doi.org/10.1016/j.optcom.2016.04.055
  25. O. Isabella, R. Vismara, A. Ingenito, N. Rezaei, and M. Zeman, Opt. Express, 24, Iss. 6: A708 (2016); https://doi.org/10.1364/OE.24.00A708
  26. J. Lin, Y. Yu, Z. Xu, F. Gao, Z. Zhang, F. Zeng, W. Wang, and G. Li, J. Power Sources, 450: 227578 (2020); https://doi.org/10.1016/j.jpowsour.2019.227578
  27. U. K. Kumawat, K. Kumar, P. Bhardwaj, and A. Dhawan, Energy Science and Engineering, 7, Iss. 6: 2469 (2019); https://doi.org/10.1002/ese3.436
  28. P. E. Blöchl, Phys. Rev. B, 50, Iss. 24: 17953 (1994); https://doi.org/10.1103/PhysRevB.50.17953
  29. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett, 77, Iss. 24: 3865 (1996); https://doi.org/10.1103/PhysRevLett.77.3865
  30. P. Ziesche, S. Kurth, and J. P. Perdew, Comput. Mater. Sci., 11: 122 (1998); https://doi.org/10.1016/S0927-0256(97)00206-1
  31. M. Arrigoni and G. K. H. Madsen, Comput. Mater. Sci., 156: 354 (2019); https://doi.org/10.1016/j.commatsci.2018.10.005
  32. P. Hohenberg and W. Kohn, Phys. Rev. B, 136, Iss. 3B: B864 (1964); https://doi.org/10.1103/PhysRev.136.B864
  33. W. Kohn and L. J. Sham, Phys. Rev., 140, Iss. 4A: A1133 (1965); https://doi.org/10.1103/PhysRev.140.A1133
  34. A. D. Becke, J. Chem. Phys., 98, Iss. 7: 5648 (1993); https://doi.org/10.1063/1.464913
  35. C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B, 37, Iss. 2: 785 (1988); https://doi.org/10.1103/PhysRevB.37.785
  36. K. Kim and K. D. Jordan, J. Phys. Chem, 98, Iss. 40: 10089 (1994); https://doi.org/10.1021/j100091a024
  37. P. J. Stephens, F. J. Devlin, C. F. Chabalowski, and M. J. Frisch, J. Phys. Chem., 98, Iss. 45: 11623 (1994); https://doi.org/10.1021/j100096a001
  38. F. Mollaamin and M. Monajjemi, J. Clust. Sci., 34, Iss .6: 2901 (2023); https://doi.org/10.1007/s10876-023-02436-5
  39. F.Mollaamin and M. Monajjemi, Int. J. Quantum Chem., 124, Iss. 2: e27348 (2024); https://doi.org/10.1002/qua.27348
  40. F. Mollaamin and M. Monajjemi, Molecular Simulation, 49, Iss. 4: 365 (2023); https://doi.org/10.1080/08927022.2022.2159996
  41. S. H. Vosko, L. Wilk, and M. Nusair, Can. J. Phys., 58, Iss. 8: 1200 (1980); https://doi.org/10.1139/p80-159
  42. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian 16, Revision C.01 (Wallingford, CT: Gaussian, Inc.: 2016).
  43. R. Dennington, T. A. Keith, and J. M. Millam, GaussView, Version 6.06.16 (Shawnee Mission, KS: Semichem Inc.: 2016).
  44. Z. Xu, C. Qin, Y. Yu, G. Jiang, and L. Zhao, AIP Advances, 14, Iss. 8: 055114 (2024); https://doi.org/10.1063/5.0208082
  45. A. D. Becke and K. E. Edgecombe, J. Chem. Phys., 92, Iss. 9: 5397 (1990); https://doi.org/10.1063/1.458517
  46. S. N. Steinmann, Y. Mob, and C. Corminboeuf, Phys. Chem. Chem. Phys., 13, Iss. 46: 20584 (2011); https://doi.org/10.1039/C1CP21055F
  47. L. Tian and C. Fei-Wu, Acta Phys. Chim. Sin., 27, Iss. 12: 2786 (2011); https://doi.org/10.3866/PKU.WHXB20112786
  48. A. Savin, O. Jepsen, J. Flad, O. K. Andersen, H. Preuss, and H. G. von Schnering, Angew. Chem. Int. Edit. Engl., 31, Iss. 2: 187 (1992); https://doi.org/10.1002/anie.199201871
  49. U. Sohail, F. Ullah, N. H. Binti Zainal Arfan, M. H. S. Abdul Hamid, T. Mahmood, N. S. Sheikh, and K. Ayub, Molecules, 28, Iss. 10: 4060 (2023); https://doi.org/10.3390/molecules28104060
Creative Commons License
This article is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License
©2003 NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine.

E-mail: tatar@imp.kiev.ua Phones and address of the editorial office About the collection User agreement