NNN 2025, vol 23, issue 1, p.27-36 Abstract
Go to journal homepage

Issues

 / 

2025

 / 

vol. 23 / 

issue 1

 



Download the full version of the article (in PDF format)

I.V. SEMKIV, L.R. DEVA, P.A. SHCHEPANSKYI, M.YA. RUDYSH, N.Y. KASHUBA, N.T. POKLADOK, and A.I. KASHUBA

Ab initio Calculations of Electronic Properties of Non-Stoichiometric CdmTen Clusters

27–36 (2025)

PACS numbers: 36.40.Cg, 36.40.Vz, 71.15.Mb, 71.15.Nc, 73.21.La, 81.05.Zx, 81.07.Ta

Non-stoichiometric CdmTen (mn: Cd13Te4, Cd4Te13, Cd19Te16, Cd16Te19, Cd38Te28, and Cd28Te38) clusters with spherical form and diameter of 1, 1.4, and 1.6 nm are studied. These CdmTen clusters have Td point-group symmetry. All calculations including geometry optimization and energy spectra of the CdmTen clusters are made using density functional theory (DFT). The GGAPBE approximation is used to describe the exchange–correlation energy of the electron subsystem with Hubbard corrections (GGA+U). Structural properties, bond length, symmetry and electronic properties like the HOMO–LUMO gap, binding energy, and electronegativity are analysed.

KEY WORDS: non-stoichiometric clusters, CdTe, semiconductor, HOMO–LUMO gap, binding energy, electronegativity.

DOI:  https://doi.org/10.15407/nnn.23.01.0027

REFERENCES
  1. R. Petrus, H. Ilchuk, A. Kashuba, I. Semkiv, and E. Zmiiovska, Funct. Mater., 27, No. 2: 342 (2020); https://doi.org/10.15407/fm27.02.342
  2. M. Akbari, M. Rahimi-Nasrabadi, S. Pourmasud, M. Eghbali-Arani, H. Reza Banafshe, F. Ahmadi, M. Reza Ganjali, and A. Sobhani nasab, Ceramics International, 46, No. 8: 9979 (2020); https://doi.org/10.1016/j.ceramint.2020.01.051
  3. Y.-J. Yang, X. Tao, Q. Hou, and J.-F. Chen, Acta Biomaterialia, 5, No. 9: 3488 (2009); https://doi.org/10.1016/j.actbio.2009.05.002
  4. V. Dzhagan, O. Kapush, O. Isaeva, S. Budzulyak, O. Magda, P. Kogutyuk, L. Trishchuk, V. Yefanov, M. Valakh, and V. Yukhymchuk, Physics and Chemistry of Solid State, 23, No. 4: 720 (2022); https://doi.org/10.15330/pcss.23.4.720-727
  5. L.-W. Wang and J. Li, Physical Review B, 69, No. 15: 153302(4) (2004); https://doi.org/10.1103/PhysRevB.69.153302
  6. A. P. Nicholson, A. H. Munshi, U. Pozzoni, and W. S. Sampath, 2018 IEEE 7th World Conference on Photovoltaic Energy Conversion (2018), p. 1932–1936; doi:10.1109/PVSC.2018.8547599
  7. Y. Mastai and G. Hodes, J. Phys. Chem. B, 101, No. 14: 2685 (1997); https://doi.org/10.1021/jp963069v
  8. Y. Masumoto and K. Sonobe, Physical Review B, 56, No. 15: 9734 (1997); https://doi.org/10.1103/PhysRevB.56.9734
  9. E. Gharibshahi, Solid State Communications, 320: 114009 (2020); https://doi.org/10.1016/j.ssc.2020.114009
  10. B. Rajbanshi and P. Sarkar, J. Phys. Chem. C, 120, No. 32: 17878 (2016); https://doi.org/10.1021/acs.jpcc.6b04662
  11. Y. Al-Douri, H. Baaziz, Z. Charifi, R. Khenata, U. Hashim, and M. Al-Jassim, Renewable Energy, 45: 232 (2012); https://doi.org/10.1016/j.renene.2012.02.020
  12. J. Li and L.-W. Wang, Physical Review B, 72, No. 12: 125325(15) (2005); https://doi.org/10.1103/PhysRevB.72.125325
  13. S. Kr. Bhattacharya and A. Kshirsagar, Eur. Phys. J. D, 48: 355 (2008); https://doi.org/10.1140/epjd/e2008-00114-3
  14. S. Baskoutas and A. F. Terzis, J. Appl. Phys., 99, No. 1: 013708(4) (2006); https://doi.org/10.1063/1.2158502
  15. S. K. Haram, A. Kshirsagar, Y. D. Gujarathi, P. P. Ingole, O. A. Nene, G. B. Markad, and S. P. Nanavati, J. Phys. Chem. C, 115, No. 14: 6243 (2011); https://doi.org/10.1021/jp111463f
  16. A. E. Kuznetsov and D. N. Beratan, J. Phys. Chem. C, 118, No. 13: 7094 (2014); https://doi.org/10.1021/jp4007747
  17. S. C. Boehme, J. M. Azpiroz, Y. V. Aulin, F. C. Grozema, D. Vanmaekelbergh, L. D. A. Siebbeles, I. Infante, and A. J. Houtepen, Nano Lett., 15, No. 5: 3056 (2015); https://doi.org/10.1021/acs.nanolett.5b00050
  18. S. Kr. Bhattacharya and A. Kshirsagar, Physical Review B, 75, No. 3: 035402(10) (2007); https://doi.org/10.1103/PhysRevB.75.035402
  19. P. Giannozzi, O. Andreussi, T. Brumme, O. Bunau, M. Buongiorno Nardelli, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, and M. Cococcioni, J. Phys.: Condens. Matter, 29, No. 46: 465901 (2017); https://doi.org/10.1088/1361-648X/aa8f79
  20. A. I. Kashuba, I. V. Semkiv, H. A. Ilchuk, R. Y. Petrus, V. M. Kordan, and S. V. Shyshkovskyi, J. Optoelectron. Adv. Materials, 24, Nos. 9–10: 477 (2022); https://joam.inoe.ro/articles/first-principle-calculations-of-electron-phonon-optic-and-thermodynamic-properties-of-cdse-and-cds-crystals/
  21. M. Kovalenko, O. Bovgyra, V. Dzikovskyi, and R. Bovhyra, SN Applied Sciences, 2: 790 (2020); https://doi.org/10.1007/s42452-020-2591-9
  22. C.-G. Zhan, J. A. Nichols, and D. A. Dixon, J. Phys. Chem. A, 107, No. 20: 418 (2003); https://doi.org/10.1021/jp0225774
  23. X. Q. Wang, S. J. Clark, and R. A. Abram, Physical Review B, 70, No. 23: 235328 (2004); https://doi.org/10.1103/PhysRevB.70.235328
Creative Commons License
This article is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License
©2003 NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine.

E-mail: tatar@imp.kiev.ua Phones and address of the editorial office About the collection User agreement