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Incommensurate magnetic fluctuations and Fermi surface topology in LiFeAs
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Using the angle-resolved photoemission spectroscopy data accumulated over the whole Brillouin zone (BZ) in
LiFeAs, we analyze the itinerant component of the dynamic spin susceptibility in this system in the normal and
superconducting state. We identify the origin of the incommensurate magnetic inelastic neutron scattering (INS)
intensity as scattering between the electron pockets, centered around the (π,π ) point of the BZ, and the large
two-dimensional hole pocket, centered around the � point of the BZ. As the magnitude of the superconducting
gap within the large hole pocket is relatively small and angle dependent, we interpret the INS data in the
superconducting state as a renormalization of the particle-hole continuum rather than a true spin exciton. Our
comparison indicates that the INS data can be reasonably well described by both the sign-changing symmetry
of the superconducting gap between electron and hole pockets and the sign-preserving gap, depending on the
assumptions made for the fermionic damping.
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I. INTRODUCTION

The relation between unconventional superconductivity and
magnetism is one of the most interesting topics in condensed-
matter physics. For example, in most of the iron-based
superconductors, superconductivity occurs in close vicinity
to an antiferromagnetic (AF) state.1–3 Moreover, supercon-
ductivity emerges when the AF order in parent compounds
is suppressed, by either electron/hole doping or disorder. In
addition, short-range AF spin excitations are still present in the
normal state of the doped systems and also become resonant
in the superconducting state at energies below twice the super-
conducting gap magnitude, 2�0.4 This resonant enhancement
is believed to be a signature of a certain phase structure of
the superconducting gap, as the paramagnetic spin response
of the Bogolyubov quasiparticles at the AF wave vector QAF

is sensitive to the anomalous coherence factor 1 − �k�k+QAF
|�k||�k+QAF | .

Once the superconducting gap at parts of the Fermi surface,
connected by QAF, changes sign, the spin response acquires
an additional enhancement at � � 2�0, which is a hallmark
of unconventional superconductivity. The observation of the
spin resonance in many iron-based superconductors provides
strong evidence for the so-called s+−-wave symmetry of the
superconducting gap, where the gap structure changes sign
between electron and hole pockets.5–7 Note that this does
not exclude the gap in each pocket having a strong angular
variation and even accidental nodal lines, allowed by A1g

symmetry.3 The angular variation of the gap, measured by
angle-resolved photoemission spectroscopy (ARPES),8,9 is
inconsistent with the idealized lattice version of s+−8 but can
be modeled by taking interaction effects into account.

While the behavior described above is observed in the
majority of the iron-based superconductors, there are some

notable exceptions. Perhaps the most interesting one is the
stoichiometric LiFeAs, which superconducts at Tc = 17 K
without any doping.10–12 In addition, LiFeAs shows neither
static AF ordering nor nesting between electron and hole
bands at QAF.13 Several neutron scattering experiments were
performed recently in LiFeAs,14–16 including only one study16

on superconducting single crystals, where magnetic intensity
at an incommensurate momentum close to (π,π ) was observed.
Its renormalization across Tc was found to be too weak to draw
a definite conclusion about the phase structure of the super-
conducting gap. Furthermore, some controversy regarding the
phase structure of the order parameter arises in the analysis
of the quasiparticle interference in the superconducting state
of LiFeAs.17,18 Note that on the theory side, the functional
renormalization group study still found s+−-wave symmetry
for the superconducting order parameter, driven by collinear
AF fluctuations.19 They eventually exceed the ferromagnetic
fluctuations stemming from the small hole pocket at the �

point, discussed previously.20

In this paper we use the ARPES data for LiFeAs, a 111-type
pnictide superconductor which is known to be free of surface
effects,21 to strengthen a connection to the inelastic neutron
scattering (INS) response. This is particularly important,
given the controversy on the Fermi surface topology in this
system.13,22 We employ an effective tight-binding fit to the
high-quality LiFeAs photoemission data in order to compute
the spin response within the random phase approximation
(RPA). We believe that this procedure is only possible at
present in 111 systems, as the availability of the requisite data
is most complete here. A comparison with INS data shows that
the incommensurate magnetic scattering intensity arises due to
scattering between the electron pockets, centered around
the (π,π ) point of the Brillouin zone (BZ), and the large
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two-dimensional hole pocket, centered around the � point
of the BZ. We also find that the renormalization of the neutron
intensity upon opening of the superconducting gap is relatively
weak, consistent with the INS experiments.

II. ARPES AND THE TIGHT-BINDING FIT

Owing to its ability to resolve both the momentum and the
energy of electronic states, modern photoemission can be used
to map out the complete low-energy electronic structure of a
layered compound like LiFeAs. From such a comprehensive
data set one may extract the dispersion of quasiparticles at
any momentum. This can be used to calculate numerous
properties like the heat capacity, plasma frequency, and Hall
coefficient.23,24 However, to make this possible, quasiparticle
dispersions have to be conveniently parameterized. One way
to do this is via a tight-binding fit. Indeed, tight-binding
models including up to 10 bands have been developed to fit the
LDA band structure of the iron-pnictide superconductors.25,26

However, from a practical perspective it is more favorable
to use an effective tight-binding model separately describing
the dispersion of each band that crosses the Fermi level.27 In
the case of a square lattice with a tetragonal symmetry the
quasiparticle dispersion can be fit by the formula

E(kx,ky) =
N−1∑

m,n=0

αm,nφm,n(kx,ky), (1)

where αm,n is an N × N matrix of effective tight-binding
coefficients, and φm,n(kx,ky) are base functions,

φm,n(kx,ky) = cos

(
2π

a
mkx

)
cos

(
2π

b
nky

)
. (2)

The α matrices are chosen to provide the best fit for the form
of the Fermi surface pockets and band velocities at the Fermi
level. For the two hole pockets centered at the � point and for
the two electron pockets located at the corners of the BZ, the
parameters are as follows (in eV):

αhole
outer =

⎛
⎜⎝

−0.062 0.058 −0.005 0.007
0.058 0.086 −0.008 0.008

−0.005 −0.008 0.012 0.007
0.007 0.008 0.007 −0.005

⎞
⎟⎠ ,

αhole
middle =

⎛
⎜⎝

−0.192 0.052 −0.012 −0.009
0.052 0.08 0.025 0.01

−0.012 0.025 −0.001 −0.007
−0.009 0.01 −0.007 −0.004

⎞
⎟⎠ ,

αel.
inner =

(
0.136 0.057
0.057 −0.074

)
,

αel.
outer =

(
0.118 0.0574
0.057 −0.074

)
.

Although the electron bands are known to have a noticeable
kz dispersion, we use averaged parameters for the sake of
simplicity, thus remaining within a two-dimensional structure.

To demonstrate to what extent this simple model is able
to capture the dispersion of low-energy bands, in Fig. 1 we
plot typical experimental Fermi surface maps13,21,23 with the
fitted band dispersion. The lower panel also contains several
general energy-momentum cuts, allowing one to compare the
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FIG. 1. (Color online) (a) Experimental Fermi surface map with
fitting contours superimposed over it. (b) Three general energy-
momentum cuts passing through the electron pocket centered at
(−π/a; −π/b) and the hole pockets at (0; 0) and (0; −2π/b).
Photoemission data were collected at the 13 ARPES station (BESSY)
using horizontally polarized light with hν = 70 eV at T ≈ 0.9 K.
Further details on experimental geometry and sample preparation
can be found elsewhere.28

experimental and model dispersions for energies close to the
Fermi level.

III. SPIN RESPONSE

In the following we proceed with the calculations of the
magnetic INS spin response. In the magnetically disordered
state transverse and longitudinal components of the spin
susceptibility are identical, and we focus below on the
transverse part. The spin response is computed within the RPA.
Then the transverse components of the full spin susceptibility
χi,j are related to the transverse components of the bare
susceptibility χ

i,j

0 as

χi,j = χ
i,j

0 + χ
i,j ′
0 ui ′,j ′χi ′,j , (3)

where i and j are band indices.
Summation over repeated band indices is implied and ui ′,j ′

are matrix elements of the interactions. The solution of Eq. (3)
in matrix form is straightforward: χ̂ = χ̂0(1 − ûχ̂0)−1. The
components of the bare spin susceptibility χ̂0 = χ

i,j

0 (q,i�m)
are given by the usual combinations of normal and anomalous
Green’s functions,

χ
ij

0 (p,i�m) = − T

2N

∑
k,ωn

Tr
[
Gi

k+p(iωn + i�m)Gj

k(iωn)

+ F i
k+p(iωn + i�m)F j

k (iωn)
]
, (4)

174519-2



INCOMMENSURATE MAGNETIC FLUCTUATIONS AND . . . PHYSICAL REVIEW B 86, 174519 (2012)

where Gi
k(iωn) = − iωn+εi

k

ω2
n+(εi

k)2+(�i
k)2 and F i

k(iωn) =
�i

k

�2
n+(εi

k)2+(�i
k)2 . For the superconducting gap function we

assume the form obtained in the ARPES experiments.8 In
particular, the superconducting gaps in the inner and in the
outer hole pockets were found to amount to �hinner = 6 meV
and �houter = 3.4 + 0.5 (cos 4φ + 0.13 cos 8φ − 0.2 cos 12φ)
(in meV), respectively. Here φ is the angle counted
on the hole Fermi surface. For the two electron
pockets the gaps were found to be similar in the form
�einner = �eouter = 3.4 + 0.5 cos θ (in meV), where θ is the
angle on the electron Fermi surface pockets. Note that a similar
angular variation of the superconducting gap in the outer
hole pocket was extracted by scanning tunneling microscopy,
though with a smaller gap magnitude.18 As ARPES is not
sensitive to the phase difference of the gap between electron
and hole pockets, we consider two possibilities, namely, s+−
symmetry of the superconducting gap, where the phase of the
superconducting gap changes sign between electron and hole
pockets, and s++, where, despite higher harmonics, the gaps
in the electron and hole pockets always remain positive.

In our numerical calculations we keep all terms in the
matrix equation for the full susceptibility. The interacting part
of the Hamiltonian contains four-fermion interactions with
small momentum transfer as well as momentum transfers
around (π,π ). They include the interactions between electron
and hole bands with a momentum transfer around (π , π )
as well as interactions with a small momentum transfer
within or between hole pockets and, similarly, for electron
pockets. For simplicity, we approximate all interactions as
angle independent, i.e., we neglect the angle dependence
introduced by dressing the interactions with coherence factors
associated with the hybridization of Fe d orbitals. These
coherent factors do play a role in the angular variation of
the superconducting gap29 but do not substantially modify the
positions of the spin resonance.30 For better convergence of
the numerical series we add the small damping of � = 3 meV
to the fermionic dispersion in the normal state. This value is
consistent with values extracted from ARPES experiments.13

In the superconducting state we study in more detail the
influence of fermionic damping on the spin excitations, as
its value plays an important role for both the s+− and
the s++ scenarios. However, we note that the experimental
determination of the superconducting gap magnitudes itself
is not directly affected in ARPES by the magnitude of the
fermionic damping but, rather, depends on the experimental
resolution and signal-to-noise ratio. Typically one is able to
detect leading edge shift of a fraction of the experimental
resolution, for the same reasons for which the position/shift of
a Gaussian feature can be determined with an accuracy notably
better than its full width at half-maximum.

We start by looking at the bare susceptibility, as this quantity
directly follows from the fermiology measured by ARPES.
In particular, in Figs. 2 and 3(a) we show its imaginary
part as q and � maps in the first BZ. As expected, the
scattering momenta associated with 2kF intraband processes
resemble the original Fermi surfaces in circular-like structures.
Furthermore, Fig. 2 allows for a straightforward identification
of the character of the scattering. The intraband scattering
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FIG. 2. (Color online) Calculated imaginary part of the bare spin
susceptibility in the normal state of LiFeAs as a function of the
momentum in the first BZ at h̄� = 5 meV.

and interband scattering between two electron or two hole
bands are centered around (0,0), while the interband scattering
between bands of different character are centered around
(±π, ∓ π ) momentum. By comparing the diameters of the
intraband-driven scattering circles with the approximate 2kF

values of the corresponding Fermi surfaces, one immediately
identifies 2k

houter
F as well as 2k

eouter
F ∼ 2k

einner
F , shown by the

arrows. In addition, the bright spot around q = 0 refers to
the scattering within the small inner hole pocket as well as the
scattering between the inner and the outer electron pockets.
Further interband scattering processes include the scattering
between two hole pockets, denoted qhh and, most importantly,
the scattering between the electron pockets and the outer hole
pocket, denoted Qi . Note that the scattering between the inner
hole pocket and the electron pockets also occurs at a similar
momentum, but its intensity is much lower already in the
bare susceptibility due to the limited phase space available for
scattering. Within the RPA the intensity of these excitations is
further suppressed compared to the scattering between the
outer hole pocket and the electron pockets. Therefore, we
can safely conclude that the excitations at Qi arise due to
scattering between the large outer hole pocket and the two
electron pockets. Note that our analysis does not include the
matrix elements originating from the transformations from
the orbital basis to the band ones. Their inclusion usually
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FIG. 3. (Color online) Calculated imaginary part of the bare
(a) and the RPA (b) spin response as a function of the transverse
momentum and frequency in the normal state of LiFeAs.
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strengthens the transverse scattering, qtr = (q,2π − q), over
the longitudinal scattering, qlg = (q,q).31 This would make
the intensity shown in Fig. 2 look more anisotropic, but it
would not change the positions of the peaks. Note that our cal-
culations within a three-orbital model are consistent with this
observation.

These scattering wave vectors are also visible along the
transverse direction, qtr = (q,2π − q), shown in Fig. 3(a).
The scattering within the small inner hole pocket at a low
momentum q as well as the scattering between the electron
pockets and the outer large hole pocket at the wave vector Qi

are most pronounced. One can further identify the intraband
scattering within the electron bands at 2ke

F . Note also that, on
the energy scale from 0 to 15 meV, the dispersion of these
excitations is almost vertical, which is caused by the relatively
high Fermi velocity of the involved bands. By comparison
with the INS we find that the scattering momentum Qi ≈
(0.86,1.14)π , associated with the scattering between the outer
hole pocket and the two electron pockets, matches precisely
the experimentally observed incommensurate momentum. As
our band structure results from the fit to the ARPES band
structure, we conclude that the incommensurate momentum
seen in the INS refers to the scattering between the electron
and the outer hole Fermi surfaces. This is further supported by
the fact that the incommensurate magnetic excitations found
in the INS do not indicate a strong z dispersion. We recall
that the small inner hole pocket around the � point of the
BZ has a strongly three-dimensional character, which we
have ignored at present. However, if taken into account, it
should produce a strong dispersion of the incommensurate
magnetic excitations along the qz momentum, which is not
the case. Therefore, the scattering between the outer hole
pocket and the two electron pockets is, most likely, responsible
for the INS intensity at the wave vector Qi ≈ (0.86,1.14)π ,
which differs from the proposal made in Ref. 32, where
these incommensurate peaks were attributed to the scattering
between the small inner hole pocket and the two electron
pockets.

To proceed further, we compute the total RPA susceptibility
by including the interactions. Note, however, that some of these
interaction parameters contribute already to the renormaliza-
tion of the bands, which was used to obtain the tight-binding
model. As the interaction values are not fully known, we
took them to be the same, i.e., u = uinterband = uinterband =
0.78αhole

outer(1,2), except for the scattering between the electron
pockets, which we consider to be small, uee = 0.1u. The
magnitudes of the interactions were also chosen such that the
system remains in the paramagnetic phase. Figure 3(b) shows
the results for the ImχRPA, displayed as a qtr and E = h̄�

map. Observe that, in comparison to the bare susceptibility, the
incommensurate excitations due to scattering between electron
and hole bands are enhanced. At the same time, we find that
the excitations at small q are much less intense compared to
the bare χ0. To understand the origin of its suppression at
finite frequencies, recall that the real part of the bare intraband
susceptibility falls off as 1/�, which indicates that within the
RPA there is no source for the enhancement of these small-q
excitations. This explains why the total susceptibility shows
stronger enhancement only for the wave vector Qi , and not for
the q ∼ 0 momentum.
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FIG. 4. (Color online) Calculated momentum dependence of the
imaginary part of the RPA spin response at h̄� = 5 meV in the normal
and superconducting s+−-wave state, respectively. Symbols refer to
the experimental data taken from Ref. 16.

A comparison to the experimental INS data in the normal
state is shown in Fig. 4, where we display the imaginary
part of the total RPA susceptibility for h̄� = 5 meV as a
function of the transverse momentum. The pronounced peaks
at Qi due to the scattering between the outer hole and the
two electron pockets agree with those found experimentally.16

Nevertheless, one should mention that the structure of the
peaks is symmetric in the calculations, while in the INS there
is an additional shoulder for larger qtr. A weak z dispersion or
some other scattering paths may cause this behavior.

In the next step, we move to the superconducting state
and compute the spin excitations for various symmetries of
the superconducting order parameters. The most interesting
question is whether any information can be extracted about
the phase structure of the gap with respect to the relative
phase difference between electron and hole pockets as well
as between inner and outer hole pockets. We remind the reader
that, in contrast to the angular dependence of the gap, the
relative phase structure cannot be directly probed by ARPES.
In particular, we considered two different situations. The first
one, which we call s+−, refers to the phase of the super-
conducting gap on the hole pockets opposite to the phase of
the gap on the electron pockets. In the other case, the so-called
s++, the overall phase of the order parameter is the same for
the electron and the hole pockets.

In Fig. 4 we show the behavior of spin excitations for the
s+−-wave symmetry together with the normal-state results
and the experimental data for h̄� = 5 meV. Observe that
renormalization of the spin excitations in the s+−-wave
channel is present but relatively weak in the sense that the
excitations are only slightly enhanced with respect to the
normal state. The reason for this moderate renormalization is
the relatively strong angular variation of the superconducting
gap in the outer hole pocket and in the electron pockets.33 The
angular-dependent gap washes out the strong enhancement of
Imχ0 at 2�0, which is a prerequisite for the sharp resonance.
In LiFeAs the enhancement of Imχ0 in the superconducting
state with respect to its normal-state value is more gradual than
in the other FeAs superconductors. In addition, the gaps in the
electron and in the outer hole pockets contributing most at this
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E

E

FIG. 5. (Color online) Calculated frequency dependence of the
imaginary part of the RPA spin response at the wave vector Qi in
the normal state and the superconducting state for two different
symmetries of the superconducting gap. Difference curves for the
s++- and s+−-wave scenarios refer to the constant fermionic damping
of 3 meV and the frequency-dependent damping, as described in the
text. Inset: Experimental data, taken from Ref. 16. Observe that the
upturn behavior of the experimental curves at energies lower than
1.5 meV is due to the elastic scattering contribution.

Qi are relatively small. Taken together with the constant value
of the fermionic damping of the order of ∼3 meV, these factors
render the enhancement of the spin excitations in the s+−-wave
scenario relatively weak. In other words, in LiFeAs there is
no true spin resonance below the continuum of particle-hole
excitations, but an enhancement of the continuum itself due
to coherence factors associated with the phase structure of the
s+−-wave superconducting gap. This also makes it difficult to
distinguish the other scenarios. In particular, although an s+−-
wave gap structure produces spin excitations which agree with
the available experimental data, the results with an s++-wave
symmetry cannot be ruled out based on the measurements at
a given frequency. The difference between two symmetries
of the order parameters becomes more apparent in Fig. 5,
where we plot ImχRPA = ∑

i,j χ i,j in the superconducting
and in the normal state as a function of the frequency (h̄�)
at the wave vector Qi . Note first that the normal-state curve
shows a characteristic single-relaxor form of the overdamped
paramagnons, centered around 7.5 meV. It agrees qualitatively
with the INS data [see Fig. 3(b) in Ref. 16].

In the superconducting state the results for the s++- and
the s+−-wave superconducting gaps depend sensitively upon
the assumption made for the fermionic damping. For constant
damping the s+− is the only symmetry which qualitatively
agrees with the experimental data in Ref. 16, shown in the
inset in Fig. 5. In particular, one finds that the intensity
of the spin excitations is suppressed with respect to its
normal-state values up to energies of about 4.2 meV and
is then slightly enhanced at higher energies. However, as
mentioned above, this enhancement is not a true exciton
but rather an enhancement of the particle-hole continuum
due to the sign change of the superconducting gap. At
the same time, for the s++-wave symmetry the difference
between the superconducting and the normal states always
remains negative for energies up to 30 meV with constant

damping. Here, the spin excitations are suppressed, as the
superconducting gap does not change sign at this particular Qi .
We note, however, that manipulation of the fermionic damping
improves the situation. Following Ref. 34 we modeled the
fermionic damping in the superconducting state as � ∼ 0 for
0 < h̄� < 3�ave, � = �ns for h̄� > 4�ave, and increasing
linearly for 3�ave < h̄� < 4�ave. We varied the value for
�ave between 3 and 6 meV to find the best-case scenario
for the s++-wave symmetry regarding the enhancement in
the superconducting state. The result for �ave ∼ 5 meV is
shown in Fig. 5. For the chosen damping parameters, the
s++-wave symmetry exhibits scattering enhancement in the
superconducting state, while a true spin exciton at an energy
of about 6 meV appears for the s+−-wave symmetry. However,
the enhancement for s++ occurs at higher energies than in the
experiment, which clearly indicates an intensity gain in the
superconducting phase for energies between 5 and 10 meV.
The agreement with s++-wave symmetry can be improved by
reducing the �ave value, but the magnitude of the enhancement
with respect to the normal state then also becomes smaller.
At this point, we can only conclude that the experimental
results do not show a true spin resonance mode, frequently
taken as characteristic for the s+−-superconductor, but, rather,
a redistribution of the particle-hole continuum in the presence
of superconductivity. This renders a definite conclusion on the
phase structure of the superconducting gap rather difficult.

IV. CONCLUSION

To conclude, we have employed the ARPES data for LiFeAs
to make a connection with the INS response. A comparison
to the INS data shows that the incommensurate magnetic
scattering intensity originates from the scattering between
the electron pockets, centered around the (π,π ) point of
the BZ, and the large two-dimensional hole pocket, centered
around the � point of the BZ. This points towards an internal
consistency between the FS topology measured by ARPES and
the INS results. We also find that the renormalization of the
neutron intensity in LiFeAs in the superconducting state can
be understood in terms of a rearrangement of the particle-hole
continuum which is rather weak for any phase structure of
the superconducting gap between electron and hole pockets.
Further studies are necessary to elucidate the nature of the
Cooper pairing in this compound.
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