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The precise momentum dependence of the superconducting gap in the iron-arsenide superconductor
Ba1−xKxFe2As2 �BKFA� with Tc=32 K was determined from angle-resolved photoemission spectroscopy
�ARPES� via fitting the distribution of the quasiparticle density to a model. The model incorporates finite
lifetime and experimental resolution effects, as well as accounts for peculiarities of BKFA electronic structure.
We have found that the value of the superconducting gap is practically the same for the inner � barrel, X
pocket, and “blade” pocket, and equals 9 meV, while the gap on the outer � barrel is estimated to be less than
4 meV, resulting in 2� /kBTc=6.8 for the large gap and 2� /kBTc�3 for the small gap. A large �77�3 %�
nonsuperconducting component in the photoemission signal is observed below Tc. Details of gap extraction
from ARPES data are discussed in Appendixes A and B.
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I. INTRODUCTION

Recently a new class of high-temperature superconduct-
ors, iron-based pnictides, attracted much attention due to a
rapid increase in the critical temperature, Tc, up to 56 K.1

These novel materials, still remaining terra incognita for
theoreticians and experimentalists, require vast efforts from
both sides to achieve a progress in the understanding of their
nature. One of the most important contributions that experi-
mentalists can make to the development of a theory of any
class of superconductors is revealing the magnitude and
symmetry of the superconducting gap. Knowledge of the
precise momentum dependence of the superconducting gap
can provide desirable information about the pairing mecha-
nism that underlies superconductivity in these compounds.
Up to now there are a number of papers providing different
estimates of the superconducting gap in iron-based
superconductors,2–9 as well as different conclusions about the
strength of coupling and applicability of Bardeen-Cooper-
Schrieffer �BCS� theory to these compounds. Here we
present an angle-resolved photoemission spectroscopy
�ARPES� study of the superconducting gap in single crystals
of Ba1−xKxFe2As2 �BKFA�, Tc=32 K. The superconducting
gap is extracted from photoemission data via a fit to a model
that accounts for finite self-energy, temperature, experimen-
tal resolution, as well as nonlinearity of the band dispersion,
where it is necessary.

II. RESULTS

According to our recent study,10 the Fermi surface �FS� of
BKFA, as seen in ARPES, consists of four different sheets:
outer � barrel, inner � barrel, X pocket, and blade pockets
along the X� line11 �see Fig. 1�a��. X pocket is electronlike,
while all other FS sheets are holelike. Figures 1�b� and 1�c�

show the same energy-momentum cut �cut1 in Fig. 1�a��
through the distribution of the photoemission intensity at 10
and 45 K, respectively. A backfolding dispersion of the inner
� barrel develops with cooling below Tc �Figs. 1�b� and 1�c��
that points to the opening of the superconducting gap. To
investigate the behavior of the quasiparticle density near the
Fermi level �FL� in detail, we plot the symmetrized energy
distribution curves �EDC� measured at 10 and 45 K in panels
�d� and �e�, respectively. The distance between the two peaks
in the symmetrized EDC approximately equals to the
doubled value of the energy gap, 2�. As follows from Figs.
1�d� and 1�e�, peaks in EDC, which correspond to the FL
crossing of inner � barrel, split into two below Tc indicating
the opening of a gap of the order of 9 meV, while peaks in
the EDC, which refer to the outer � barrel, do not split upon
cooling, indicating zero �or small in comparison with the
peak width� magnitude of the gap on this part of the FS.
Figures 1�f� and 1�g� show the energy dependence of the
intensity �area under the momentum distribution curve
�MDC��, which comes from inner and outer � barrels, as
extracted from the fit of MDC to four Lorentzians. A pile-up
peak clearly develops on the curve that corresponds to the
inner � barrel, while no such feature is observed for the outer
� barrel. The resolution-broadened 10 K Fermi cutoff is plot-
ted in panel �g� to show that the difference between 45 and
10 K curves mainly comes from temperature smearing of the
Fermi edge. The mentioned arguments allow us to conclude
that the inner � barrel bears a gap of the order of 9 meV and
the gap on the outer one is much smaller.

Although straightforward and unpretentious, “symmetri-
zation” is a rough method for the gap extraction from pho-
toemission data. Therefore below we improve the assessment
of the gap magnitude with a robust fitting procedure where
the value of the superconducting gap is extracted from the fit
of EDC, integrated in a finite momentum window. In this
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case the integration is performed over a very small, com-
pared to the Brillouin-zone size, region, which does not im-
ply reduction in momentum-integrated data, and is used only
in order to collect the whole available photoemission signal,
referring to the particular FL crossing of a single band. The
integrated EDC �IEDC� is fitted to the specially derived for-
mula �see Appendix A�, which coincides with Dynes
function12 multiplied by the Fermi function and convolved
with the response function,

IEDC��� = � f��,T��Re
� + i��

E
�� � R���E� , �1�

where E=���+ i���2−�k
2, � is the binding energy with re-

versed sign, T is the temperature, �� is the imaginary part of
the self-energy, �k is the momentum-dependent supercon-
ducting gap, and �E is the experimental resolution. A similar
method of gap extraction is widely used in angle-integrated
photoemission spectroscopy.13 Figure 2�a� shows IEDC that

i

FIG. 1. �Color online� �a� Distribution of the photoemission intensity at the FL with superimposed FS contours �white lines�. �b�
Momentum-energy cut through the � point �cut1 in panel �a�� taken at 10 K. �c� Same cut, taken at 45 K. ��d� and �e�� MDC taken at the FL
and symmetrized EDC from cuts �b� and �c�, respectively. Maxima of the symmetrized EDC are marked by dots. �f� kF EDC referring to the
inner � barrel recorded at 10 and 45 K. �g� Near-kF EDC emphasizes onset of the superconductivity even better. �h� Energy dependence of
the inner �-barrel intensity extracted from the fit of MDC. �i� The same for the outer � barrel.
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refer to the inner � barrel, from cut1 �see Fig. 1�a��, mea-
sured with 50 eV photon energy at different temperatures, as
well as their fits to formula �1�. The temperature dependence
of the extracted gap shown in Fig. 2�b� illustrates that a
superconducting gap develops upon cooling through Tc and
reaches the value of 9.1�0.7 meV at low temperatures. Fig-
ure 2�c� represents IEDC from cut2 �see Fig. 1�a�� recorded
at 11 K with different incident photon energies, h	. The data
exhibit good reproducibility, and the values of the gap ex-
tracted for different h	’s show only a small scattering within
the error bars—fit results in 9.4, 9.5, and 10.2 meV for h	
=40, 50, and 70 eV, respectively. In order to emphasize the
quality of our data recorded at high excitation energies, we

show a single EDC recorded with h	=80 eV as an inset to
Fig. 2�b�. Thus, we can conclude that the momentum aniso-
tropy of the superconducting gap on the inner � barrel is
absent within 1.5 meV. The outer � barrel is much less in-
tense than the neighboring inner � barrel, which complicates
the analysis. With the same fitting procedure we estimate the
gap on the outer � barrel to be not more than 4 meV.

Now we turn to the most interesting and problematic re-
gion of the BKFA Fermi surface that was not completely
resolved in previous studies of iron-arsenic
superconductors—a propellerlike structure centered at the X
point �see Fig. 1�a��. Figures 3�a� and 3�b� show the same
energy-momentum cut through the X point �cut3 in Fig. 1�a��

FIG. 2. �Color online� Temperature and momentum dependence of the superconducting gap on the inner � barrel. Reliability of the
results. �a� Evolution of the integrated EDC from cut1 �see Fig. 1�a�� with temperature and fits to formula �1�. EDC are shifted along left axis
for clarity. Panel �b� shows the extracted magnitude of the gap plotted against temperature. Inset to �b� shows temperature dependence of
resistivity �with and without magnetic field� confirming high quality of the crystals and emphasizing equality of bulk and surface Tc

=32 K. �c� Integrated EDC from cut2 �see Fig. 1�a�� measured at different excitation energy at 11 K and corresponding fits to formula �1�
reveal reproducibility of the data and robustness of the fitting procedure. EDC are shifted along left axis. The inset in �c� shows a single EDC
recorded with h	=80 eV, demonstrating high resolution at high excitation energies.
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above �36 K� and below �11 K� Tc, respectively.
Note that the intensity of the blades is largely suppressed

for this photon energy and light polarization �see Fig. 1�c� of
Ref. 10�. The difficulties with this region in momentum
space are related to the presence of the Van Hove singularity
close to the FL, which brings the peak in the density of states
already above Tc �see Fig. 3�c��. If both bottom and top of
the band are far enough from the FL, then one can treat the
dispersion of the band as linear without significant accuracy
loss so that formula �1� works well. For the case of band
depth comparable to the magnitude of the superconducting
gap, formula �1� has to be modified in order to account for
the nonlinearity of the normal-state band dispersion. If one
assumes that the band possesses electronlike parabolic dis-
persion with the bottom of the band located at �=−
0 below
the FL, then formula �1� transforms to

IEDC��� = � f��,T�
2

�Re	� + i��

E
�� 
0


0 − E
+� 
0


0 + E
�

+� 
0


0 − E
−� 
0


0 + E

�� � R���E� . �2�

As it is easy to see, formula �2� reduces to Eq. �1� when 
0
becomes much larger than �, ��, �E, and �k. For a detailed
derivation, see Appendix A.

The depth of the X pocket was determined from the
normal-state data using two different methods: a fit of mo-
mentum distribution curves taken at different binding ener-
gies with two Lorentzians and a fit of the IEDC to formula
�2� with �=0 and 
0 as a free parameter. Band depths deter-
mined from both methods agree well—the first method re-
sults in 
0=20 meV, while the second one yields 
0
=20.5 meV. Figure 3�c� shows IEDC from cut3 �see Fig.
1�a��, referring to the X pocket, measured at 11 and 36 K, as
well as corresponding fits to formula �2�. One may note in
Fig. 3�c� the leading edge below the Fermi level for high-
temperature data, as well as two separate peaks in symme-
trized EDC above Tc. These signatures of the gap are not
relevant here, as discussed in Appendix B. Temperature de-

pendence of the gap extracted from fitting the data to for-
mula �2� is shown in Fig. 3�d�. At low temperatures the gap
on the X pocket reaches 9.3 meV. From available experimen-
tal data we estimate the gap magnitude on the blades to be
also 9 meV �see, e.g., Fig. 3�e��. The results concerning mo-
mentum dependence of the superconducting gap are graphi-
cally summarized in Fig. 4. The gap is isotropic within the
error bars although, along with similarities to Ref. 4, we see
evidence for small anisotropy on the inner � barrel—the gap
may be slightly larger along �X �Brillouin-zone diagonal�
than along �M �the difference is less than 10%�.

Presented analysis of the data via fitting of IEDC allows
us to conclude that the low-temperature spectra have super-
conducting and nonsuperconducting components �see Fig.
5�. Only about 23�3 % of the intensity coming from the
inner � barrel at 10 K refer to the superconducting part of the
spectrum.14 The presence of the two different components in
the measured signal can be explained by a phase-separated
coexistence of superconducting and normal states, which
was already observed in these samples15 as well as in other
similar samples.16

III. EXPERIMENTAL DETAILS

Single crystals of BKFA were grown using Sn as flux in a
zirconia crucible. The crucible was sealed in a quartz am-
poule filled with Ar and loaded into a box furnace. A cooling
rate of 3 °C /h was applied from the maximum temperature
of 850 down to 550 °C for the growth. The growth details
are described in Ref. 17. The crystals were cleaved in situ
and measured with Scienta SES R4000 analyzer at the base
pressure of 5�10−11 mbar. ARPES experiments were per-
formed using the “13 ARPES” end station at BESSY.

IV. CONCLUSIONS

In conclusion, we proposed a precise procedure for ex-
tracting the momentum dependence of the superconducting
gap from ARPES spectra. The developed method of data
treatment allows us to measure energy gaps with an accuracy

FIG. 3. �Color online� Super-
conducting gap on the X pocket.
�a� Energy-momentum cut
through the X point �cut3 on Fig.
1�a�� taken at 36 K. �b� Same cut
taken at 11 K. �c� Evolution of the
IEDC with temperature and fits to
formula �2� and symmetrized kF

EDC. �d� Shows temperature de-
pendence of the gap. �e� Compari-
son of IEDC referring to the M
pocket and to the blades reveals
virtually the same values of the
superconducting gap.
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much higher than experimental resolution, similarly to the
Voigt-fit procedure,18 enabling detection of the true values
for the MDC width with an accuracy much better than mo-
mentum broadening. The IEDC-fitting procedure applied to
ARPES spectra of BKFA yielded the following results: �i�
the gap on the inner � barrel along �M equals
9.1�0.7 meV and along �X equals 9.7�1 meV; �ii� the
gap on the outer � barrel is less than 4 meV; �iii� the gap on
the X pocket equals 9.3�2 meV; �iv� the gap on the blades
is estimated to be 9 meV; �v� at 10 K the imaginary part of
the self-energy, ��, in the vicinity of the FL was found to be
equal to 1–2 meV. Comparison with other ARPES studies of
the superconducting gap in iron-based superconductors is
shown in Table I. We evaluate the coupling strength as
2� /kBTc=6.8 for the inner � barrel, X pocket, and blades,
while for the outer � barrel 2� /kBTc�3. A comparison to
other experiments is shown in Table II.

Finally, the observation of drastically different supercon-
ducting gaps on the inner and outer � barrels is in line with
theoretically suggested magnetic downfolding19 and with a
hidden �� ,�� order observed experimentally.10 Otherwise it
would be hard to expect so different gaps on closely located
and very similar bands, formed by slightly different combi-
nations of the same atomic orbitals.
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TABLE I. Momentum dependence of the superconducting gap in iron-arsenic superconductors as revealed
by ARPES studies sorted by the time of appearance on the arXiv.org. Values of the gap and estimates of the
gap anisotropy on the inner � barrel are given in meV.

Ref. 2 3 4 5 6 This paper

Tc �K� 53 37 35 53 37 32

Inner � barrel 20 12.5 12 15 12 9.2�1

Outer � barrel 5.5 8 6 �4

X pocket �12.5� �10� �11� 9�2

Blades �11� 9�3

Gap anisotropy �3 2 �5 �3 �1.5

FIG. 4. �Color online� Momentum dependence of the superconducting gap in Ba1−xKxFe2As2 �Tc=32 K� is shown as a three-dimensional
plot with underlying FS intensity map for orientation. The solid green lines in the basal plane denote the boundaries of the Brillouin zone.
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APPENDIX A: FITTING FORMULA

1. Derivation

Below we adduce the detailed derivation of formulas �1�
and �2�. We also show that for the simple case of negligible
curvature of the band dispersion and momentum-
independent gap, formula �1� coincides with the Dynes for-
mula.

A very general model for the measured ARPES signal
is20,21

I�k,�� = �f��,T�A�k,��� � R� � Rk. �A1�

By definition, the integrated EDC is

IEDC��� � � I�k,��dk . �A2�

As soon as we integrate our data over k, momentum reso-
lution does not affect IEDC,22 which is already an advantage
of this method. Substituting Eq. �A1� into Eq. �A2�, we get

IEDC��� = 
 f��,T��� A�k,��dk�� � R�. �A3�

For the spectral function A�k ,�� in the superconducting
state, we use the following well-accepted model:23

A�k,�� = 2��uk
2��� − Ek� + vk

2��� + Ek�� , �A4�

where

uk
2 =

1

2
	1 +


k

Ek

, vk

2 =
1

2
	1 −


k

Ek

 ,

Ek = �
k
2 + �2. �A5�

Substituting Eq. �A4� under the integral into Eq. �A3� and
omitting unnecessary constant factors, we get

� A�k,�0�dk =� �uk
2���0 − Ek� + vk

2���0 + Ek��dk

=
1

2
	1 −

��0
2 − �2

�0

�� dEk

dk
�−1�

k=k1

+
1

2
	1 +

��0
2 − �2

�0

�� dEk

dk
�−1�

k=k2

,

�A6�

where k1,2 are solutions of 
k1,2
= ���0

2−�2. Below we will

denote derivative by a prime:
dEk

dk �k=k1
�Ek1

� .
Expanding the derivative,

�Ek�� =
��0

2 − �2

��0�
�
k�� , �A7�

FIG. 5. �Color online� Superconducting and nonsuperconducting
constituents of the spectrum. �a� Energy distribution of the intensity
corresponding to superconducting and nonsuperconducting parts of
the spectrum. �b� Second derivatives of the data and fit. Structure of
the second derivative confirms presence of superconducting and
nonsuperconducting components. �c� Sketch, illustrating presence
of two different components in the same spectrum.

TABLE II. Coupling strength, 2� /kBTc, in iron-arsenic superconductors as revealed by different experimental techniques—compare to
the BSC universal value 3.53. Most of the available studies reveal two superconducting gaps of different magnitudes, which are represented
in the table as “large” and “small.” References 2–6 are ARPES studies, Refs. 7 and 8 are Andreev spectroscopy studies, and Ref. 9 is a
specific-heat study.

Ref. 2 3 4 5 6 7 8 9 This paper

Large gap 9 8.1 8.2 6.8 7.5 3.7 9.6 4 6.8

Small gap 3.6 5.5 3.9 3.4 �3
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we get

� A�k,�0�dk =
��0�

2��0
2 − �2

��
k1
� �−1 + �
k2

� �−1�

+
1

2
sgn��0���
k1

� �−1 − �
k2
� �−1� . �A8�

�In this formula 
k1,2
� implicitly depend on �0.�

For the case of the linear band dispersion the derivative is
constant, 
k�=const, and we arrive at

� A�k,�0�dk =
��0�

��0
2 − �2

. �A9�

This formula coincides with the Dynes function although
the premises for the latter are somewhat different, requiring
the assumption of the momentum-independent gap. Impor-
tant difference in definition of our IEDC and the well-known
Dynes function is that the former is a trace integral along one
direction �see Fig. 6�b��, while the latter is a double integral
over the whole momentum space �see Fig. 6�c��,

dyn��� � � � A�k,��dkxdky . �A10�

Substituting here the aforementioned model for spectral
function �A4�, we go from a double integral to the integra-
tion along the contour,

dyn��0� = �
k:
k=��0

2−�2
vk

2��Ek�−1dk

+ �
k:
k=−��0

2−�2
vk

2��Ek�−1dk . �A11�

When the depth of the band is much larger than the value of
the superconducting gap, i.e., when we can neglect the non-
linearity of the dispersion �which is an important condition
for the Dynes formula to hold�, this expression reduces to the
integral over the Fermi surface,

dyn��0� = �
k:
k=0

��Ek�−1dk . �A12�

Here we expand �Ek similarly to formula �A7�, and get

dyn��0� = �
k:
k=0

��0�
��0

2 − �2
��
k�−1dk . �A13�

As soon as �0 and � �in this case� do not depend on k, one
can pull them out from under the integral,

dyn��0� =
��0�

��0
2 − �2�

k:
k=0
��
k�−1dk . �A14�

The integrand does not depend on �0, therefore the whole
integral is unnecessary for our purposes constant factor,
which can be omitted, and we arrive at the same result as Eq.
�A9�,

dyn��0� =
��0�

��0
2 − �2

. �A15�

2. Finite lifetime

Up to now we have the result �formula �A8�� obtained
under the assumption of infinitely large lifetime or, in other
words, for very sharp bands. In such a case in order to get the
formula that incorporates effects of the finite lifetime, the
following recipe is often used: take the formula, derived for
infinite lifetime, add to the argument the imaginary part, and
take the real part of the result,

g��� → Re g�� + i��� . �A16�

Below we show that in our case this trick provides the exact
result.

In order to account for lifetime broadening rigorously, one
has to substitute a Lorentzian in Eq. �A4� for the delta func-
tion,

��� − Ek� → L���� − Ek� =
1

2�

��

�� − Ek�2 + ��2 ,

which results in the possibility to rewrite the expression for
the spectral function in the following way:

A���k,�� = A�k,�� � L���� − Ek� , �A17�

FIG. 6. �a� Spectral function in the superconducting state for the
case of linear normal-state dispersion 
k. According to formula
�A4�, the spectral weight above the Fermi level is governed by uk

2

and by vk
2 below. �b� Integration in our case is performed along one

energy-momentum cut �gray stroke�, which intersects Fermi surface
at only one point. �c� In the momentum-integrated techniques inte-
gration is naturally performed over the whole momentum space.
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where A�k ,�� stands for nonbroadened spectral function
�A4�. As convolution over � commutes with integration over
k,

� A���k,��dk = �� A�k,��dk� � L��. �A18�

We already know the result for integration of the spectral
function over momentum �formula �A8��, and now the only
problem is to evaluate the convolution. We will do it for
linear and quadratic band dispersions, i.e., input parameters
to derive formulas �1� and �2�.

Let g�����A�k ,��dk, then in order to evaluate the con-
volution in Eq. �A18�, we have to calculate the integral
�−�

+�g���L����0−��d�.
The function g��� is defined on the real axis. Once we

know the analytic function g̃�z�, z�C, such that Re�g̃����
=g��� for ��R, we can calculate the required integral with
the help of Cauchy’s residue theorem,

�
+�

−�

g���L����0 − ��d�

= Re��
+�

−�

g̃���L����0 − ��d��
= Re� lim

R→�, �→0
�

�R,�

g̃�z�L����0 − z�dz�
= � g̃ possesses no poles inside �R,� �

= Re�2�i Res
z=�0+i��

g̃�z�
1

2�

��

��0 − z�2 + ��2�
= Re�g̃��0 + i���� , �A19�

which coincides with formula �A16� and implies formulas
�1� and �2� as corollaries. For definition of the integration
contour �R,� refer to Fig. 7. Explicit form of the function
g̃�z� for linear band dispersion is

g̃1�z� =
z

�� z2 − �2
, �A20�

where for z=rei� we pick the following definition of the
square root ��z�r1/2ei�/2, �� �0,2��.

For quadratic dispersion we get

g̃2�z� =
1

2

z

�� z2 − �2	 1

k1
+

1

k2

 +

1

2
	 1

k1
−

1

k2

 , �A21�

where k1,2=
���
0���z2−�2,

���z�r1/2ei�/2, �� �−� ,��.
Defined in such a way, g̃1,2�z� are analytic in C \ �−� ,

+��, i.e., all conditions for Cauchy’s residue theorem are
fulfilled.

3. Formulas in real numbers

For numerical calculations it is useful to rewrite formula
�1� without the use of complex numbers:

IEDC��� = � f��,T����a + c� + ��b
�2c�a + c

�� � R���E� ,

�A22�

where a=�2−��2−�k
2, b=2���, and c=�a2+b2.

Similarly, formula �2� can be rewritten as

IEDC��� = � f��,T�
1

2
�
0	 ����a + c���1 + �1� + b�1� + ���b��1 + �1� − �1�a + c���

2c�1
�a + c��1 + �1

+
����a + c���2 + �2� + b�2� + ���b��2 + �2� − �2�a + c���

2c�2
�a + c��2 + �2

− sgn������1 + �1

�2�1

−
��2 + �2

�2�2
�
� � R���E� ,

�A23�

where

a = �2 − ��2 − �k
2, b = 2���, c = �a2 + b2,

�1,2 = 
0 ��a + c

2
, �1,2 = �

b
�2�a + c

,

and �1,2 = ��1,2
2 + �1,2

2 .

FIG. 7. �Color online� Integration along the contour on the com-
plex plane. According to Cauchy’s residue theorem, the integral
along the contour �R,� equals to the residue in the pole of the
integrand inside, �0+ i��.
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APPENDIX B: EXTRACTION OF THE GAP FROM THE
MODELED DATA BY SYMMETRIZATION,

LEADING EDGE, AND FITTING

The symmetrization is highly valued by some part of the
ARPES community. We strongly believe that symmetrization
is to be substituted by more rigorous and advanced ways of

data treatment, such as those used in very recent publications
on photoemission spectroscopy of superconductors.24,25

Below we model ARPES spectra with formulas �A1� and
�A2�, extract the gap with symmetrization and leading
edge,20 and proposed here fit of the IEDC. Results confirm
that the fitting procedure is robust against momentum reso-

FIG. 8. �Color online� Influence of the energy resolution on the determination of the gap via symmetrization, leading edge, and fit. First
column: energy resolution for the corresponding row. Second column: simulated energy-momentum cut above Tc ���=3 meV, kT
=3 meV, and �=0 meV�. Third column: simulated energy-momentum cut below Tc ���=3 meV, kT=1 meV, and �=10 meV�. Fourth
column: determination of the gap with symmetrization. Fifth column: determination of the gap with leading edge. Sixth column: determi-
nation of the gap with fit to formula �1� and �2 criterion as insets to some panels. Symmetrization and leading edge provide acceptable results
for good resolution and fail when the resolution becomes worse. The fitting procedure always provides the correct result.

MOMENTUM DEPENDENCE OF THE SUPERCONDUCTING… PHYSICAL REVIEW B 79, 054517 �2009�

054517-9



lution, properly accounts for energy resolution and finite life-
time, provides correct values even in the case of the nonlin-
ear band dispersion, and allows one to disentangle
nonsuperconducting and superconducting parts of the spec-
trum. At the same time, symmetrization and leading edge are
not stable with respect to the effects of the experimental
resolution and, furthermore, fail in the case of the shallow
band and in the presence of the nonsuperconducting compo-
nent.

1. Energy resolution

First, we study the influence of the experimental energy
resolution on the determination of the gap from ARPES data
with symmetrization, leading edge, and fit to formula �1�
from the paper. The results of these studies are shown in Fig.
8 and summarized in Table III. Please note that not the res-
olution of the analyzer is important but the resolution of the
whole photoemission experiment. Also it is worthwhile to
mention that effects of the lifetime broadening are in some
respect similar to the effects of energy resolution as they
both lead to the broadening of the spectra.

By the way, leading edge �the lowest binding energy at
which the kF EDC reaches half of its maximum� alone is not
a good measure of the gap �see corresponding columns in
Figs. 8–10�, while leading edge shift �shift of the leading
edge with respect to the position in the normal state� is a lot
more relevant quantity.

2. Momentum resolution

Next, we consider the influence of the experimental mo-
mentum resolution on the determination of the gap from
ARPES data with symmetrization, leading edge, and the fit-
ting to formula �1�. The results of these studies are shown in
Fig. 9 and summarized in Table IV. Note that not the reso-
lution of the analyzer is important but the resolution of the
whole photoemission experiment.

The width �full width at half maximum� of the narrowest
EDC from Refs. 2–6, as well as from our studies, is 8–10
meV. The momentum resolution is about 0.1 Å−1.

3. Nonlinearity of the band dispersion

The case when the band depth is comparable to the value
of the superconducting gap is quite complicated and really

requires special treatment. That is why formula �2� has been
derived and used to fit the data. It is easy to mistake the Van
Hove singularity for the gap when using simplified methods
of data analysis. Masking effects of Van Hove singularity is
one of the real examples where symmetrization and leading
edge give wrong results �Fig. 10 and especially column three
bottom row�. Naturally, such “gap” will not close at Tc.

Here we have modeled the influence of the nonlinearity of
the band dispersion in conjunction with experimental mo-
mentum resolution on the determination of the gap from
ARPES data with symmetrization, leading edge, and fit to
formula �2�. The results of these studies are shown in Fig. 10
and summarized in Table V.

4. Nonsuperconducting component

According to recent �SR �muon spin rotation� studies,
superconducting fraction for optimally doped BKFA samples
�those used in Refs. 2–6� comprises 50% of the sample vol-
ume �see Ref. 16�, and for our slightly underdoped samples it
comprises only 25% �see Ref. 15�. Under these circum-
stances, the leading edge is completely irrelevant to the gap
value while symmetrization may provide some estimates of
the value of the gap depending on other conditions �reso-
lution, lifetime, etc.�. Fitting in this case is indispensable as it

TABLE III. Superconducting gap as extracted from modeled
data �Fig. 8� with different methods. All numbers are given in meV.
The correct value of the gap �implemented in simulation� equals 10
meV.

R� Symmetrization Leading edge shift Fit

0 10 9.1 10�0.1

4 10 8.6 10

8 10 8.0 10

12 9.8 7.8 10

16 8.6 7.5 10

20 0 7.1 10�0.1

TABLE IV. Superconducting gap as extracted from modeled
data �Fig. 9� with different methods. All numbers, except for mo-
mentum resolution, are given in meV. The correct value of the gap
�implemented in simulation� equals 10 meV. Parameters R�

=10 meV and Rk=0.1 Å−1 correspond to the experimentally ob-
served widths of the spectra.

R�

Rk

�10−3 Å−1� Symmetrization Leading edge shift Fit

0 0 10.0 9.1 10

0 50 12.0 8.2 10

0 100 12.3 8.0 10

0 200 12.4 7.5 10

10 100 16 6.4 10

20 200 23 4.9 10�0.5

TABLE V. Superconducting gap, as extracted from modeled
data �Fig. 10� with different methods. All numbers, except for mo-
mentum resolution, are given in meV.

Rk

�10−3 Å−1�
Input to

the model Symmetrization
Leading

edge Fit

0 0 0 −1.9 0+0.8

10 10.1 6.9 10�0.1

45 0 10.9 0.5 0+0.8

10 12.4 7.9 10�0.1

60 0 18 3.5 0+0.8

10 20 8.3 10�0.1
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not only reveals precise values of the gap but also allows us
to determine the fractions of the superconducting and nonsu-
perconducting signals �see Fig. 5�. For our crystals these
fractions determined from two completely different
methods—�SR and the fit of the ARPES data—perfectly
match each other.

5. Renormalization

Presence of the dispersion anomalies, “kinks,” can affect
position of the leading edge and peaks in the symmetrized
EDC and can be mistaken for energy gap, similarly to the
discussed above Van Hove singularity. In the case of linear

FIG. 9. �Color online� Influence of the momentum resolution on the determination of the gap via symmetrization, leading edge, and fit.
First column: energy resolution for the corresponding row. Second column: momentum resolution for the corresponding row. Third column:
simulated energy-momentum cut above Tc ���=3 meV, kT=3 meV, and �=0 meV�. Fourth column: simulated energy-momentum cut
below Tc ���=3 meV, kT=1 meV, and �=10 meV�. Fifth column: determination of the gap with symmetrization. Sixth column: deter-
mination of the gap with leading edge. Seventh column: determination of the gap with fit to formula �1� and �2 criterion as insets to some
panels. Symmetrization and leading edge provide acceptable results for good resolution and fail when the resolution becomes worse. The
fitting procedure always provides the correct result.
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bare band dispersion,26 IEDC is not affected by self-energy
at all,

�
−�

+� 1

2�

�����
�� − ����� − vFk�2 + �����2dk =

1

vF
. �B1�

6. Summary

�1� The proposed fitting procedure is a rigorous and pre-
cise method of gap extraction, which accounts for several
important features of Ba1−xKxFe2As2 photoemission spectra:
�a� nonlinearity of the band dispersion; �b� presence of large
nonsuperconducting component; and �c� experimental reso-
lution.

�2� Symmetrization is not a universal way for the extrac-
tion of the gap from spectroscopic data since it is highly
sensitive to experimental resolution and nonlinearity of the
band dispersion. For example, it �a� gives zero value for the
gap while there is substantial gap �Fig. 8, bottom row� and
�b� gives substantial value for the gap, while actual gap is
zero �Fig. 10, bottom row�.

�3� Leading edge alone is not a good measure of the gap
�see bottom rows of Figs. 8–10�, while leading edge shift in
the absence of the nonsuperconducting component is quite
good although still a rough measure of the gap and provides
result with an accuracy better than 50% even under severe
conditions �see Tables III–V�.
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