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Angle-resolved photoemission spectroscopy �ARPES� provides a detailed view of the renormalized band
structure and, consequently, is a key to the self-energy and the single-particle Green’s function. Here, we
summarize the ARPES data accumulated over the whole Brillouin zone for the optimally doped
Bi2Sr2CaCu2O8−� into a parametric model of the Green’s function, which we use for calculating the itinerant
component of the dynamic spin susceptibility in absolute units with many-body effects taken into account. By
comparison with inelastic neutron scattering �INS� data, we show that the itinerant component of the spin
response can account for the integral intensity of the experimental INS spectrum. Taking into account the
bilayer splitting, we explain the magnetic resonances in the acoustic �odd� and optic �even� INS channels.
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The origin of the magnetic-resonance structure observed
in the superconducting �SC� state of YBa2Cu3O6+�

�YBCO�,1–5 Bi2Sr2CaCu2O8−� �BSCCO�,6–8 and other fami-
lies of cuprates9 is one of the most controversial topics in
today’s high-Tc superconductor physics. Existing theories
waver between the itinerant magnetism resulting from the
fermiology10–14 and the local spin pictures �such as static and
fluctuating “stripes,” coupled spin ladders, or spiral spin
phase models�,9,15,16 as it appears that both approaches can
qualitatively reproduce the main features of the magnetic
spectra in the neighborhood of the optimal doping. It is a
long-standing question, which of these two components �itin-
erant or localized� predominantly forms the integral intensity
and the momentum dependence of the magnetic resonances.
It is therefore essential to estimate their contribution quanti-
tatively, carefully taking into account all the information
about the electronic structure available from experiment.
However, such a comparison, which could shed light on the
dilemma, is complicated, as it requires high-quality INS data
and the extensive knowledge of the electronic structure for
the same family of cuprates. On the other hand, ARPES data
for YBCO compounds, for which the best INS spectra are
available, are complicated by the surface effects,17 while for
BSCCO, most easily measured by surface-sensitive tech-
niques such as ARPES, the measurements show much lower
resolution due to small crystal sizes.

Here we propose a way to estimate the dynamic spin sus-
ceptibility in the odd �o� and even �e� channels within the
random-phase approximation �RPA� from the single-particle
spectral function, including many-body effects, and compare
the resulting spectrum calculated for optimally doped
BSCCO with the available INS measurements on both
BSCCO and YBCO.

We start with establishing the relation between the quasi-
particle Green’s function and INS response. The normal-state
Lindhard function is related to the quasiparticle Green’s

function via the following summation over Matsubara
frequencies:18,19

�0�Q,i�n� =
1

�2 � �
m

G�k,i�m�G�k + Q,i�m + i�n�dk . �1�

Besides the bare Green’s function, Eq. �1� also holds for the
renormalized one. It can be rewritten as a double integral
along the real energy axis:20,21
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where Cij�k ,� ,	�= 1
�2 � Im Gi �k ,��Im Gj�k+Q ,	�dk is the

cross correlation of the constant-energy cuts of the spectral
function over the Brillouin zone �BZ�, nf���=1/ �e�/kBT+1� is
the Fermi function, and indices i and j numerate the bonding
and antibonding bands. The factors Cij�k ,� ,	� can be effi-
ciently calculated in the Fourier domain by means of the
cross-correlation theorem.22

In the SC state, the anomalous Green’s function F addi-
tionally contributes to �0:12

Cij�k,�,	� =
1

�2 � �Im Gi �k,�� Im Gj �k + Q,	�

+ Im Fi �k,��Im Fj �k + Q,	�� dk . �3�

Although Im F is not directly measured by ARPES, it can
still be accounted for, as we will subsequently show.

After one knows the Lindhard function �0 �frequently re-
ferred to as the bare spin susceptibility�, one can finally ob-
tain from RPA the dynamic spin susceptibility �,11 the imagi-
nary part of which is directly proportional to the measured
INS intensity:15

�o,e�Q,�� = �0
o,e�Q,��/�1 − JQ

o,e�0
o,e�Q,��� . �4�
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The coefficient JQ
o,e in the denominator of Eq. �4� de-

scribes the effective Hubbard interaction. In our calculations,
we employed the model for JQ

o,e discussed in Refs. 14 and
23:

JQ
o,e = − J��cos Qx + cos Qy� ± J�, �5�

where the first term accounts for the Q dependence due to the
in-plane nearest-neighbor superexchange, and the second
term arises from the out-of-plane exchange interaction.

Thus, knowing the single-particle Green’s function leads
us to a comparison of ARPES results with the INS data. The
previous calculations based on this idea12–14 were performed
for the bare band structure only, disregarding the renormal-
ization effects, which makes the conclusions based on com-
parison with the INS data rather uncertain. The recent work
by Chatterjee et al.24 is the only available paper that includes
the many-body effects from experimental data �in a proce-
dure different from ours�, but it does not account for the
bilayer splitting �necessary for reproducing the odd and even
INS channels�, provides the results in arbitrary units only,
rather than on an absolute scale, and gives only an estimate
for the anomalous contribution to �. So we will address these
issues in more detail below.

At first, we will introduce an analytical model that can
reproduce the ARPES measurements within a wide energy
range and all over the BZ. As in a single experiment it is
practically impossible to obtain a complete data set of
ARPES spectra, such a model allows making use of all the
available data measured from a particular sample and calcu-
lating the full three-dimensional data set afterward. In such a
way the effect of matrix elements and experimental resolu-
tion is also excluded.

The measured ARPES intensity is basically proportional
to the imaginary part of the Green’s function �although it is

affected by matrix elements, experimental resolution, and
other factors25�. The latter can be obtained if one knows the
self-energy, extracted from the ARPES data in a routine self-
consistent Kramers-Kronig procedure.26

We employed a model of the Green’s function based on
the bare electron dispersion studied in Ref. 26 and a model
for the imaginary part of the self-energy ��=�el� +�bos� ,
where �el� =��2 is the Fermi-liquid component of the scatter-
ing rate that originates from the electron-electron interac-
tions, and �bos� models the coupling to a bosonic mode.27 In
the �� ,�� �nodal� direction we modeled �bos� by a steplike

function �bos� = 1
2
n�1+tanh�

−�−�n

��n
�� of width ��n, height


n, and energy �n, while in the �� ,0� �antinodal� direction
we accounted for the peak in the self-energy due to the
pileup in the density of states at the gap energy: �bos�
=−
a Re �

	��−i� �a�2−��0+�a�2 , where �0 is the SC gap, �a is the

mode energy, and ��a is the broadening parameter �see Ref.
28 and references therein�. The real part of the self-energy ��
was then derived by the Kramers-Kronig procedure and the
Green’s function was calculated according to29

G�k,�� =
� − ��k,�� + �k

�� − ��k,��� 2 − �2�k�
1 −
��k,��

�
�2

− � k
2

, �6�

where ��k� is the SC d-wave gap changing from zero along
the BZ diagonals to the maximal value of ±�0 along the
antinodal directions. Self-energy parameters were specified
independently for the nodal and antinodal parts of the spec-
tra, with a d-wave interpolation between these two direc-
tions: ���k ,��=�n����+ 1

4 ��a����−�n������cos kx−cos ky�2.
We also assumed the particle-hole symmetry in ��. To
achieve the best reproduction of the experimental data, all

FIG. 1. �Color online� Comparison of the model with experimental ARPES spectra of optimally doped Bi-2212 at 30 K taken with ��a�
and �b�� 50 eV and �c� 38 eV photon energies. The model spectra are smoothed with a Gaussian to account for 20 meV energy resolution and
0.025 Å−1 angular resolution. �a� Spectra at the �� ,0� point with the corresponding energy distribution curves �below� taken along the
dashed lines. �b� Nodal spectra along the �� ,�� direction. �c� Comparison of the experimental and model spectra taken at an intermediate
position in k space to check the validity of the interpolation of the self-energy between the nodal and antinodal directions. �d� The
Kramers-Kronig consistent real and imaginary parts of the nodal and antinodal self-energies. �e� Positions of the cuts �a�–�c� in k space.
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the free parameters were adjusted during comparison with a
set of ARPES spectra of Bi-2212 to achieve the best corre-
spondence �Fig. 1�. The best-fit parameters of the model are
listed in the following table:

�=3.0 eV−1 
n=30 meV 
a=200 meV ��n=10 meV
��a=0.08�0 �n=60 meV �a=42 meV �0=35 meV

We would like to stress here that such a simple self-
energy model that includes coupling only to a single bosonic
mode can accurately reproduce the state of the art ARPES
spectra of BSCCO, as we have just shown.

The described model has multiple advantages for numeri-
cal calculations over raw ARPES data. Only in such a way
one can completely separate the bonding and antibonding
bands, which is impossible to achieve in the experiment, and
reveal the nature of the odd and even channels of the two-
particle spectrum. With the self-energy ��k ,�� and the pair-

ing vertex ��k��1−
��k,��

� � present in the model, it becomes
possible to calculate the anomalous Green’s function
F�k ,��:30

F�k,�� =

��k�
1 −
��k,��

�
�

�� − ��k,���2 − �2�k�
1 −
��k,��

�
�2

− � k
2

. �7�

Besides the already mentioned absence of matrix element
effects and experimental resolution, formulae �6� and �7� also
allow us to obtain both real and imaginary parts of the
Green’s functions for all k and � values including those
above the Fermi level. It automatically implies the particle-
hole symmetry ��kf−k=−�kf+k� in the vicinity of the Fermi
level, which in the case of the raw data would require a

complicated symmetrization procedure based on Fermi sur-
face fitting, being a source of additional errors. Finally, it
provides the Green’s function in absolute units, allowing for
quantitative comparison with other experiments and theory,
even though the spectral function originally measured by
ARPES lacks the absolute intensity scale. Thereupon, we
find the proposed analytical expressions to be better esti-
mates for the self-energy and both Green’s functions and
therefore helpful in calculations where comparison to the ex-
perimentally measured spectral function is desirable.

Now we will apply the described model to calculating the
dynamic spin susceptibility. Starting from the model data set
built for optimally doped BSCCO at 30 K, with the maximal
SC gap of 35 meV, we have calculated the Lindhard function
�Eq. �2�� in the energy range of ±0.25 eV in the whole BZ
for the odd and even channels of the spin response �see Fig.
2�a��. To demonstrate that the contribution of the anomalous
Green’s function is not negligible, in Fig. 2�b� we show sepa-
rately the normal and anomalous components of �0

o.
After that we calculated � �Eq. �4�� by adjusting the J� and

J� parameters to obtain correct resonance energies at �� ,��
in the odd and even channels �42 and 55 meV, respectively�,
as seen by INS in BSCCO.6–8 The resulting �o,e are qualita-
tively similar to those obtained for the bare Green’s
function.14 The intensity of the resonance in the even channel
is approximately two times lower than in the odd channel,
which agrees with the experimental data.4,8 On the other
hand, for J�=0 the splitting between odd and even reso-
nances does not exceed 5–6 meV, which is two times less
than the experimental value. This means that the out-of-plane
exchange interaction �in our case J� /J� �0.09� is significant
for the splitting and the difference in �0 alone between the
two channels cannot fully account for the effect.

In Fig. 3�a� we show both resonances, momentum inte-

FIG. 2. �Color online� �a� Energy dependence of the real and
imaginary parts of the Lindhard function �0 at the �� ,�� point for
the odd and even channels. �b� Contributions of the normal �thin
solid curves� and anomalous �dashed curves� components to the real
and imaginary parts of �0

o in the SC state. The sum of two compo-
nents is shown as thicker curves. In our calculations we used the 

value in Eq. �2� of 5 meV, which could introduce insignificant ad-
ditional broadening of �0 as compared to the bare band calculations.
The energy integration range in Eq. �2� was chosen to be ±0.25 eV.

FIG. 3. �Color online� �a� k integrated ��=Im��� in the odd
�solid curve� and even �dashed curve� channels. �b� k dependence
of the resonance energies in odd �*� and even ��� channels along the
high-symmetry directions �0,0�− �� ,��− �� ,0�. The dashed lines
mark the onset of the particle-hole continuum �position of the
“step” in �0��. Second row: Constant-energy cuts of �� in the odd
channel �c� below the resonance, �d� at the resonance energy, and
�e� above the resonance. The center of each BZ image corresponds
to the �� ,�� point.
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grated all over the BZ. Here, we would like to draw the
reader’s attention to the absolute intensities of the reso-
nances. A good estimate for the integral intensity in this case
is the product of the peak amplitude and the full width at half
maximum, which for the odd resonance results in
0.12�B

2 / f.u. in our case. This is in good agreement with the
corresponding intensity in latest experimental spectra on
YBCO �
0.11�B

2 / f.u.�.5

As for the momentum dependence of �, Fig. 3�b� shows
the dispersions of incommensurate resonance peaks in both
channels along the high-symmetry directions, calculated
from the Green’s function model with the self-energy derived
from the ARPES data. We see the W-shaped dispersion simi-
lar to that seen by INS on YBCO2,15 and to the one calcu-
lated previously by RPA for the bare Green’s function.13,14 At
�� ,�� both resonances are well below the onset of the
particle-hole continuum at 
65 meV �dashed line�, which
also agrees with previous observations.3,13,14 At higher ener-
gies, magnetic excitations are overdamped, so the upper
branch of the “hourglass” near the resonance at �� ,�� sug-
gested by some INS measurements2,3,15 is too weak to be
observed in the itinerant part of � and either is not present in
BSCCO or should originate from the localized spins.

In Fig. 3 we additionally show three constant-energy cuts
of � in the odd channel below the resonance, at the reso-
nance energy, and above the resonance. As one can see, be-
sides the main resonance at �� ,��, the calculated � repro-
duces an additional incommensurate resonance structure,
qualitatively similar to that observed in INS experiments.2

Below the resonance the intensity is concentrated along the

�k ,0� and �0,k� directions, while above the resonance it pre-
vails along the diagonal directions �k , ±k�.

In this work we have demonstrated the basic relationship
between the ARPES and INS data. The comparison supports
the idea that the magnetic response below Tc �or at least its
major constituent� can be explained by the itinerant magne-
tism. Namely, the itinerant component of �, at least near
optimal doping, has enough intensity to account for the ex-
perimentally observed magnetic resonance both in the acous-
tic and optic INS channels. The energy difference between
the acoustic and optic resonances seen in the experiments on
both BSCCO and YBCO cannot be explained purely by the
difference in �0 between the two channels, but requires the
out-of-plane exchange interaction to be additionally consid-
ered. In the latter case, the experimental intensity ratio of the
two resonances agrees very well with our RPA results. Also
the calculated incommensurate resonance structure is similar
to that observed in the INS experiment. Such quantitative
comparison becomes possible only if the many-body effects
and bilayer splitting are accurately accounted for. A possible
way to do that is to use the analytical expressions for the
normal and anomalous Green’s functions proposed in this
Brief Report. We point out that such method is universal and
can be applied also to other systems with electronic structure
describable within the self-energy approach.
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