
Change of quasiparticle dispersion in crossingTc in the underdoped cuprates

T. Eckl,1,* W. Hanke,1 S. V. Borisenko,2,† A. A. Kordyuk,2,3 T. Kim,2 A. Koitzsch,2 M. Knupfer,2 and J. Fink2
1Institut für Theoretische Physik und Astrophysik, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany

2Institute for Solid State Research, IFW-Dresden, P. O. Box 27 00 16, D-01171 Dresden, Germany
3Institute of Metal Physics of National Academy of Sciences of Ukraine, 03142 Kyiv, Ukraine

(Received 12 February 2004; revised manuscript received 7 June 2004; published 29 September 2004)

One of the most remarkable properties of the high-temperature superconductors is a pseudogap regime
appearing in the underdoped cuprates above the superconducting transition temperatureTc. The pseudogap
continously develops out of the superconducting gap. In this paper, we demonstrate by means of a detailed
comparison between theory and experiment that the characteristic change of quasiparticle dispersion in cross-
ing Tc in the underdoped cuprates can be understood as being due to phase fluctuations of the superconducting
order parameter. In particular, we show that within a phase fluctuation model the characteristic back-turning
BCS bands disappear aboveTc whereas the gap remains open. Furthermore, the pseudogap rather has a U
shape instead of the characteristic V shape of adx2−y2-wave pairing symmetry and starts closing from the nodal

kW =sp /2 ,p /2d directions, whereas it rather fills in at the antinodalkW =sp ,0d regions, yielding further support to
the phase fluctuation scenario.
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I. INTRODUCTION

More than 15 years after the discovery of the high-Tc
superconductors, the mechanisms leading to their unusual
properties are still under debate. Especially the pseudogap
phase, which appears in various experiments below a char-
acteristic temperatureT* in the underdoped region of the
phase diagram as a reduction of spectral weight,1,2 might be
a key to a better understanding of the high-Tc superconduct-
ing (SC) cuprates. In 1995 Emery and Kivelson3 proposed
that the proximity to the Mott insulating phase implies a
strongly reduced phase stiffnessJ,rss0d /m* compared to
the usual BCS case. This causes the phase ordering tempera-
ture Tw,J to be much lower than the mean-field pair-
binding temperatureTc

MF. Taking this idea one step further3

implies that at least part of the pseudogap behavior might be
due to a kind of “preformed” Cooper pairs which form at a
temperatureT* ;Tc

MF well above the actual SC transition
temperatureTc;Tw, where phase coherence among these
pairs finally sets in. This phase fluctuation scenario also ex-
plains quite natural the strongly enhanced Nernst signal
aboveTc in the underdoped cuprates.4

In previous work, we have already shown that indeed a
two-dimensional BCS-like Hamiltonian with adx2−y2-wave
gap and phase fluctuations, which were treated by a Monte
Carlo simulation of anXY model, yields results which com-
pare very well with scanning tunneling measurements over a
wide temperature range.1,2 Furthermore, this phenomenologi-
cal phase fluctuation model was also able to explain the pos-
sible “violation” of the in-plane optical integral in under-
doped Bi2Sr2CaCu2O8+d sBi2212d.5

However, for the phase fluctuation description to be cor-
rect over a wide temperature range, one needs a mechanism
that produces “cheap” vortices, so that the only energy scale
is the stiffnessJ and the dominating fluctuation channel is
that of the phase of the SC order parameter. Mechanisms that
can lead to a small vortex core energy range from the more

conventional picture of a granular superconductor, where the
vortices arrange themselves to reside in the insulating re-
gions between the SC grains, up to the existence of a com-
peting order that exists inside the vortex cores. As soon as
the superconducting order parameter is suppressed inside the
vortex core, the system develops the competing order instead
of going into a normal conducting paramagnetic state and
thus has a much smaller vortex energy compared to a con-
ventional BCS superconductor. Recently, it was shown6 that
vortices with a staggered-flux core can provide a way to
understand the low vortex energy over a wide temperature
range aboveTc. In all cases, the small phase stiffness and the
low vortex core energy have the same origin, which is the
proximity to the Mott-insulating state.

In this paper, we present theoretical results on the quasi-
particle dispersion, which—when compared with experimen-
tal data—give a clear fingerprint towards a possible phase
fluctuation scenario for the origin of the pseudogap. Earlier
angle-resolved photoemission spectroscopy(ARPES) results
have shown deviations from the simple BCSdx2−y2-wave
form of the SC gap in underdoped Bi2212,7,8 which might be
due to a change in the pairing interaction in the proximity of
the AF insulating phase. By analyzing the temperature de-
pendence of the quasiparticle(QP) dispersion, we want to
show that the change of the QP dispersion in crossingTc
from the SC to the pseudogap region can be understood quite
naturally by the assumption that the pseudogap is caused by
phase fluctuations of the SC gap. Moreover, the phase fluc-
tuation scenario also explains the deviations from the simple
dx2−y2-wave form of SC and pseudogap9 in the underdoped
cuprates. Using the ARPES with tunable excitation photon
energy we disentangle bilayer splitting related effects and
determine the true dispersion and the leading edge gap
(LEG) function corresponding to the bonding band in the
pseudogap regime of Pb-Bi2212.

Since belowTc the QP excitations are perfectly BCS like
unless in the extremely underdoped region,10 it is tempting to
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start from the BCS ground state and see how it is destroyed
by including phase fluctuations.11–14

II. MODEL AND CALCULATIONS

In the following we use a phenomenological phase fluc-
tuation model which has already been shown to successfully
account for the pseudogap observed in tunneling
experiments2 and which was also able to explain the possible
“violation” of the in-plane optical integral in underdoped
Bi2212.5 We consider the Hamiltonian

H = H0 + H1, s1d

whereH0 is the usual tight-binding Hamiltonian of noninter-
acting electrons on a two-dimensional(2D) square lattice:

H0 = − to
kiWjWl,s

sc
iWs

†
cjWs + cjWs

†
ciWsd − mo

iW,s

niWs. s2d

Here,c
iWs

† sciWsd creates(annihilates) an electron of spins on

the iWth site of the 2D square lattice andniWs=c
iWs

†
ciWs is the

number operator.t denotes an effective nearest-neighbor
hopping term andm is the chemical potential. The angles
k¯l indicate sums over nearest-neighbor sites of the 2D
square lattice.

The second part of the HamiltonianH1 contains a BCS-
like d-wave interaction, which is given by

H1 = − go
iWdW

sDiWdWkDiWdW
† l + D

iWdW
† kDiWdWld, s3d

with dW connecting nearest-neighbor sites. The coupling con-
stantg stands for the strength of the effective next-neighbor
dx2−y2-wave pairing interaction. The origin of this pairing in-
teraction is unimportant for the further calculation. It can be
either of pure electronic origin, like spin fluctuations, or pho-
non mediated. The only important thing is that there exists an
effective pairing interaction that produces a finite local
dx2−y2-wave gap as one goes below a certain temperatureT* .
In contrast to conventional BCS theory, we consider the
pairing-field amplitude not as a constant real number, but
rather as a complex number

kD
iWdW
† l =

1
Î2

kc
iW↑
†

c
iW+dW↓
†

− c
iW↓
†

c
iW+dW↑
† l = D ei FiWdW , s4d

with a constantmagnitudeD and afluctuatingbond-phase
field FiWdW. In order to get a description, where thecenter-of-
massphases of the Cooper pairs are the only relevant degrees
of freedom,15 we write thedx2−y2-wave bond-phase field in
the following way:

FiWdW =HswiW + wiW+dWd/2 for dW in the x direction,

swiW + wiW+dWd/2 + p for dW in the y direction,
s5d

wherewiW is thecenter of massphase of a Cooper pair local-

ized at lattice siteiW.
In order to account for the proximity to the Mott insulat-

ing state and thus the low superfluid density, we perform a

quenched averageover all possible phase configurations
with the statistical weight given by the classicalXY free
energy

Ffwig = − Jo
ki j l

cosswi − w jd, s6d

where the phase stiffnessJ determines the Berezinskii-
Kosterlitz-Thouless transition temperatureTBKT to a quasi-
phase-ordered state which we take asTc. TheXY free energy
is defined on a coarse-grained lattice with thescaleof the
lattice spacing given by the pair coherence length15 j0
,vF /pD. Now, the underdoped cuprates are in an interme-
diate coupling regime between large BCS mean-field pairs
and tightly bound BEC pairs,16,17 with the pair-size coher-
ence lengthj0 given by 3–4 times the basic Cu-Cu lattice
spacing. For a typical 36336 fermionic lattice, which is nu-
merical feasible, we would only have a 939 phase lattice on
top of it. This would not allow for any proper temperature
scaling of the phase correlation lengthjsTd and obscure the
Kosterlitz-Thouless transition. Therefore we have chosen to
setDsc=1.0 t. This yieldsj0&1 and allows the Monte Carlo
(MC) phase simulation to be carried out on the sameL3L
lattice that is used for the diagonalization of the fermionic
Hamiltonian.5 In addition, the choice ofDsc=1.0 t automati-
cally introduces the important short distance cutoff. Finally
we setTc< 1

4T* , where we had the scanning tunneling mi-
croscopy(STM) experiments of Ref. 1 in mind.

III. EXPERIMENTAL DETAILS

The ARPES experiments were carried out using angle-
multiplexing electron energy analyzers. Spectra were re-
corded either withhn=21.218 eV photons from a He source
or using radiation from the U125/1-PGM beamline at the
BESSY synchrotron radiation facility. The total energy reso-
lution was set to 17 meV[full width at half maximum
(FWHM)] at hn=38 eV. The angular resolution was kept
below 0.2° both along and perpendicular to the analyzer
entrance slit. Data shown in Fig. 4 were taken with
0.2°30.3° angular resolution. The data were collected on
two similar underdoped, modulation-free single crystals of
Pb-Bi 2212sTc=77 Kd.

IV. DISCUSSION OF RESULTS

A. Dispersion

Figure 1 shows the quasiparticle dispersion calculated
from our phenomenological phase fluctuation model for 10%
doping sknl=0.9d. The spectral weight is plotted along the
s0,0d→ sp ,0d→ sp ,pd direction through the Brillouin zone
(BZ). The free dispersion would cross the Fermi surface
close to thesp ,0d point. One can clearly see that the char-
acteristic(back-turning) Bogoliubov quasiparticle band dis-
appears in the pseudogap state aboveTc. Instead, one obtains
a sharp quasiparticle dispersion which runs straight towards
the Fermi energy and then fades out at a distance of the order
of the SC gapDsc. This is in complete agreement with the
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experimentally observed dispersion in underdoped Bi2212
which is shown in Fig. 2.

The angle-resolved data presented in Fig. 2 provide an
insight into how the pseudogap is actually created nearkf. In
the superconducting state a characteristic BSC-like back-
dispersion is easily seen. This clarity is achieved by the care-
ful choice of the excitation photon energy. Exactly nearhn
=38 eV the emission probability for the bonding band is
much higher than for the antibonding band18,19 and bilayer-
related complications are thus avoided. AboveTc in the
pseudogap state the characteristic BCS behavior is replaced
by the straight dispersion and strong depletion of the spectral
weight towardsEf, which, as will be shown below, still
leaves the energy gap in the spectrum.

Furthermore, Fig. 1 shows that the sharp quasiparticle fea-
tures close to thesp ,0d point are getting lost aboveTc within
the phase fluctuation model. The sharp coherentsp ,0d peaks
dissappear and broad incoherent weightfills in the gap. Ex-
actly this behavior was observed before in photoemission
studies of the pseudogap9,20–23and is also responsible for the

characteristic temperature dependence of the scanning tun-
neling gap in the underdoped cuprates,1,2 where the
pseudogap fills in instead of closing. Interestingly, not only
SC fluctuations,24 but also staggered flux fluctuations25 can
lead to this temperature dependence of thesp ,0d-
photoemission peak.

The disappearance of the characteristic BCS bands above
Tc within the phase fluctuation picture can be understood by
the fact that the BCS wave function is a coherent superposi-
tion of wave functions with a different number of electron
pairs26

uCBCSl = p
k

suk + vk ck↑
† c−k↓

† duf0l = o
N

lNuCNl, s7d

where uCNl is an N-particle wave function. The quantum-
mechanical uncertainty in the particle number is given by

sDNd2 = 4o
k

uk
2vk

2. s8d

Now vk
2=1−uk

2 is the momentum distribution function for
T=0 and the weight of a quasiparticle peak at momentumk
is given byvk

2 suk
2d for E,Ef sE.Efd.

In the normal metallic state withD=0, one gets a sharp
cutoff in vk

2 suk
2d at the Fermi wave vectork=kf so that

sDNd2;0. In the BCS superconducting state, however,vk
2

suk
2d are finite also beyond the Fermi wave vectorkf, which

means that also fork.kf sk,kfd one gets spectral weight at
E,Ef sE.Efd. This produces the characteristic BCS band
structure, with bands approachingEf from below (above)
and then turning back to higher binding(quasiparticle)
energies.

Now let us see what happens if one introduces an arbi-
trary phase factor into the BCS wave function26

FIG. 1. Spectral weightAskW ,vd in the pseudogap state
(T=2.0 Tc, top) and in the superconducting state slightly below
Tc sT=0.75Tcd calculated from the phase fluctuation model. For
comparison we also show the spectral weight for the phase coherent
BCS limit (bottom).

FIG. 2. (Color online) (a) Superconducting state. Energy distri-
bution of the photoemission intensity along the direction shown as a
red arrow on the sketch below. The BCS-like dispersion is clearly
observed for the bonding band.(b) Pseudogap state. No more bend-
ing back of the dispersion is observed. Instead, spectral weight
fades upon approaching the Fermi level.
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uCwl = p
k

suuku + uvkueiw ck↑
† c−k↓

† duf0l. s9d

Integrating over all possible phases yields26

uCNl =E
0

2p

dw e−iNw/2p
k

suuku + uvkueiw ck↑
† c−k↓

† duf0l

=E
0

2p

dw e−iNw/2uCwl. s10d

This means that one projects into an exact particle-number
eigenstate by making the relative phase of the Cooper pairs
completely uncertain. Equation(8) is a special case of the
general uncertainty relation between phase and particle num-
ber:

DN Dw * 1. s11d

The above-described behavior corresponds to what is hap-
pening in the phase-fluctuation model as a function of tem-
perature. Starting from a phase coherent state atT=0 with
Dw=0, the particle number is completely uncertain withDN
given by Eq.(8). With increasing temperature, onegradually
projects into a state with exact particle number N. In the
temperature range where the phases are completely uncorre-
lated sj,j0d, one then obtainsDN=0, and the back-turning
BCS bands must completely dissappear(lose weight for
k.kf, as seen in Figs. 1 and 2). At finite temperatures, this
situation corresponds to a classical grand canonical average
over ensembles with a different number of particles, where
each state has a well-defined particle number and is no
longer a coherent quantum-mechanical superposition of
states with different number of particles. Thus, we obtain a
crossover from a BCS-like phase-ordered band structure to
a completely new phase-disorderedpseudogappedband
structure.

B. Superconducting gap and pseudogap

Next we want to elucidate the effect of phase fluctuations

on thekW dependence of the quasiparticle pairing gap. There-
fore, we have plotted in Fig. 3 the quasiparticle dispersion
obtained from MC simulations of the phase fluctuation

model along the Fermi surface of the free dispersioneskWd at
half-filling sknl=1.0d. This gives us effectively the gap func-

tion DskWd. As can be seen in Fig. 3, belowTc one obtains the
characteristicV shape of a gap withdx2−y2 pairing symmetry.
As the temperature is raised, the quasiparticles peaks are
getting broader. In the pseudogap state aboveTc, the spectral

weight is getting rather incoherent close thekW =sp ,0d as was
pointed out before. However, close to the nodal point of the
gap function one still obtains a sharp quasiparticle disper-
sion. There, one can clearly see spectral weight shifting to
lower binding energies which produces anextended gapless

region in the pseudogap state close tokW =sp /2 ,p /2d instead
of the nodal point in the superconducting state belowTc.
This behavior is in complete agreement with photoemission
experiments9,23 which show that the pseudogap starts closing

from kW =sp /2 ,p /2d where one obtains a finite Fermi arc but

ratherfills in at kW =sp ,0d exactly as in Fig. 3(top).

Furthermore, the pseudogapDskWd obtained from phase
fluctuations of the localdx2−y2 pairing amplitude rather has a
U-like shape(see Fig. 3, top) than the characteristic V shape
of a BCSdx2−y2-gap. For comparison, Fig. 4 shows the ex-
perimentally observed pseudogap in underdoped Bi2212.
One can clearly see that the experimentally determined
pseudogap has exactly the U-like form that we have obtained
from the phase fluctuation model. This deviation from the
pure dx2−y2-wave form was also observed in the supercon-
ducting state of very underdoped cuprates and interpreted as
higher harmonic contributions to the pairing function.7,8

However, these experimental results just might indicate the
possible relevance of quantum phase fluctuations in this re-

FIG. 3. Gap functionDskWd in the pseudogap state(T=2.0 Tc,
top) and in the superconducting state slightly belowTc

sT=0.75Tcd calculated from the phase fluctuation model. For com-
parison we also show the BCS gap function(bottom).
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gion of the phase diagram. Our results on the effects of phase
fluctuations on the form of the pairing gap could also be of
some relevance for electron doped cuprates27 where a pos-
sible crossover from adx2−y2 (or anisotropics-wave) to a
pures-wave symmetry of the superconducting gap as a func-
tion of electron doping was observed.28,29

V. SUMMARY AND CONCLUSION

In conclusion, we have elaborated the important role that
phase fluctuation effects might play in the underdoped cu-
prates. With a detailed comparison between theory and ex-
periment we were able to show how phase fluctuations influ-
ence the quasiparticle spectra. In particular the disappearance
of the BCS-Bogoliubov quasiparticle band atTc and the
change from a more V-like superconducting gap to a rather
U-like pseudogap aboveTc can be explained in a consistent
way by assuming that the low-energy pseudogap in the un-
derdoped cuprates is due to phase fluctuations of a local
dx2−y2-wave pairing gap with fixed magnitude. Furthermore,
phase fluctuations can explain why the pseudogap starts clos-
ing from the nodal points, whereas it rather fills in along the
antinodal directions.
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