Electronic band structure of ferro-pnictide superconductors (FPS)

Alexander Kordyuk IFW Dresden & IMP Kiev

FPS'11 Zvenigorod, 03.10.2011

Authors and Collaborations

- S. V. Borisenko D. V. Evtushinsky V. B. Zabolotnyy T. K. Kim
- I. Morozov
- S. Aswartham
- S. Wurmhel
- G. Behr
- C. Hess
- R. Hübel
- A. Koitzsch
- M. Knupfer
- B. Büchner

- A. N. Yaresko
- D. S. Inosov
- A. V. Boris
- G. L. Sun
- D. L. Sun
- V. Hinkov
- C. T. Lin
- B. Keimer

A. Varykhalov E. Rienks R. Follath

H. Q. Luo Z. S. Wang H. H. Wen

Plan

- ARPES on FPS
- Band structure of 111 and 122
- Which electrons do superconductivity
- ... and why?

Photoelectric effect + electron analyser

ARPES Image

angle / momentum

$\textbf{ARPES Image} \rightarrow \textbf{ARPES Space}$

Momentum-energy space

TiSe₂

Fermi surface (energy distribution) map

TiSe₂

Surface vs Bulk

Bi₂Se₃

Iron-based superconductors

No SC

Hai-Hu Wen and Shiliang Li, Annu. Rev. Condens. Matter Phys. 2011

Iron-based superconductors

Paglione & Greene, Nat. Phys. (2010)

122: truncated square tiling

Band structure of 122 (BFA)

Band structure of 122 (BFA)

Yaresko 2010

Band structure of FPS

Yaresko 2010

Iron-based superconductors

Paglione & Greene, Nat. Phys. (2010)

Phase diagrams

N.Katayama et al. arXiv:1003.4525

Y.J.Yan et al. arXiv:1104.4941

Basov & Chubukov Nature Phys. 2011

Phase diagrams

S.Jiang et al. J.Phys.Cond.Matt. 2009

111

LiFeAs (T_c = 18 K, non-magnetic) NaFeAs (T_c = 9-26 K, T_{AF} = 40 K)

Perfectly ARPESable LiFeAs

- 1. Superconducting with $T_c = 18$ K but non-magnetic...
- 2. Stoichiometric = impurity clean.
- 3. Perfectly two-dimensional Fe-3dxy band well separated from other bands: easy to analyse its fine structure.
- 4. Cleaves between the two Li layers => non-polar surface.

LiFeAs: band structure

LiFeAs: band structure

Three orbital model

P.A.Lee & X.-G.Wen PRB 2008

LiFeAs: band structure

- 3 times renormalized;
- dxy band is 60 (bare 180) meV higher: no FS nesting;
- dxz/dyz bands are 40 (120) meV lower;
- dxz/dyz bands are flattened or "pinned" to the Fermi level.

Borisenko <u>PRL 2010</u> Yaresko 2010

LiFeAs: renormalization

Kordyuk PRB 2010

LiFeAs: FS orbital character

122

hole doped

$BaFe_{2}As_{2} (BFA) \bullet Ba_{1-x}K_{x}Fe_{2}As_{2} (BKFA) \bullet KFA$ $Ba_{1-x}Na_{x}Fe_{2}As_{2} (BNFA)$

122 electron doped

BFA • Ba(Fe_{1-x}Co_x)₂As₂ (BFCA)

122

isovalent doping

 $BaFe_2(As_{1-x}P_x)_2$ (BFAP)

H. Shishido et al. PRL 2010

Fermi surface of BKFA

Shimojima Science 2011

Tesanovic Physics 2009

Hu & Ding arXiv:1107.1334

Fermi surface of BKFA

Fermi surface of BKFA

V. Zabolotnyy Nature 2009, Phys C 2009

V. Zabolotnyy <u>Nature 2009</u>, <u>Phys C 2009</u>

Propeller FS in 122

 $Ba(Fe_{1-x}Co_x)_2As_2$

 ω = -90 meV, *hv* = 80 eV

Ba_{1-x}K_xFe₂As₂

 $\omega = 0, hv = 80 \text{ eV}$

 $Ba_{1-x}Na_{x}Fe_{2}As_{2}$ $\omega = 0, hv = 80 \text{ eV}$

Evtushinsky 2010

Calculated FC of BFA - BKFA

z = 0.000 dz = 0.000Ef = 0.076 0.6 0.4 0.2 ky (2π/b) 0.0 -0.2 --0.4 -0.6 -0.5 0.0 0.5 1.0 1.5 kx (2π/a)

```
z = 0.000 dz = 0.500 Ef = 0.076
```


Yaresko, Zabolotnyy 2011

BKFA: exp & calc

Yaresko, Zabolotnyy 2011

Calculated BFA band structure renormalized and shifted by 76 meV

Yaresko, Zabolotnyy 2011

Yaresko 2010

BKFA: band structure

BKFA: Fermi surface and gaps

dxy dxz dyz

 \triangle correlates with the orbital composition: $\triangle = 3-4$ meV for 3dxy and 3dz2 $\triangle = 10.5$ meV for 3dxz/yz.

BFAP: node or small gap?

Y. Zhang et al. arXiv:1109.0229

KFA: hole-like Fermi surfaces

T. Yoshida et al. <u>arXiv:1007.2698v2</u>

FS's of iron-based superconductors

111

11 Fe(Se,Te)

14K

42622 Sr₄V₂O₆Fe₂As₂

D. Evtushinsky 2011

FS's of iron-based superconductors

122

D. Evtushinsky 2011

BFA: density of states

BFA: density of states

T_c(density of states)?

BFA: density of states

Generalized phase diagram

SC & SDW

Kopaev & Rusinov Phys. Let. A 1987...

SC & SDW

Kopaev & Rusinov Phys. Let. A 1987...

SC & SDW

Yaresko 2011

Conclusions

- The band structure of Fe-SC is well captured by LDA but do not take it too literally. The calculated Fermi surface is usually bad starting point for theory.
- Main contributors to SC are dxz,yz electrons and Tc for different compounds seems to correlate with the position of the Van Hove singuliarities (Lifshitz transitions) for the xz- and yz-bands.
- Both the renormalization and SDW do increase the DOS at the Fermi level for dxz,yz- electrons.

THANK YOU