Does the normal normal state in 2D metals ever sets in?

A. A. Kordyuk IFW Dresden

Outline

I. New ARPES

- wide acceptance angle
- ultimate resolution
- lowest temperature
- II. Ordering in
 - dichalcogenides
 - cuprates & etc.
 - pnictides

ARPES anatomy

angle / momentum

ARPES Image → ARPES Space

Wide - acceptance lens

Wide acceptance lens

E_K k_x

Zooming in...

Photon energy – an important parameter

Inosov PRL 2007, PRB 2008

Waterfalls in cuprates

CDW in 2D

CDW in 2D

El-ph interaction ?

2H-TaSe₂ crystal structure, CDW transitions

- 1st-order lock-in transition to a 3x3 commensurate CDW at T_{ICC} = 90 K
- What was strange? No nesting. No change in ARPES spectra at $T_{\rm NIC}$. Gap of 24-250 meV only below 90K.

Electronic structure of 2H-TaSe₂

Normal state 180 K

Normal state of 2H-TaSe₂

Momentum (Å-1)

Incommensurate CDW state of 2H-TaSe₂

Borisenko PRL 2008

Craven & Meyer PRB 1977

Commensurate CDW state of 2H-TaSe₂

Normal state 290 K

0.2 0.3 0.4

-0.2 -0.1 0.1 0.0

Incommensurate CDW 107 K 0.1

0.1 -0.2 -0.1 0.0 Momentum (A⁻¹)

0.0 0.1 -0.1

Fermi surface: commensurate CDW state

Fermi surface: commensurate CDW state

Comparison: IC-CDW and normal state

Pseudogap as a function of temperature

Autocorrelation – measure of nesting

290 K

Nesting properties as a function of T

Nesting properties as a function of T

Electron susceptibility

$$\chi_0(\mathbf{q},\omega) = 2 \int \frac{\mathrm{d}\mathbf{k}}{(2\pi)^d} \frac{n_{\mathrm{F}}(\epsilon_{\mathbf{k}}) - n_{\mathrm{F}}(\epsilon_{\mathbf{k}+\mathbf{q}})}{\epsilon_{\mathbf{k}} - \epsilon_{\mathbf{k}+\mathbf{q}} + \omega + \mathrm{i}\,0^+}$$

Lindhard functions at $\omega \to 0$

$$\begin{split} \chi_{\mathbf{q}} &= \sum_{\mathbf{k}} \frac{n_{\mathbf{F}}(\epsilon_{\mathbf{k}}^{\mathbf{a}}) - n_{\mathbf{F}}(\epsilon_{\mathbf{k}+\mathbf{q}}^{\mathbf{a}})}{\epsilon_{\mathbf{k}}^{\mathbf{a}} - \epsilon_{\mathbf{k}+\mathbf{q}}^{\mathbf{a}}} + \sum_{\mathbf{k}} \frac{n_{\mathbf{F}}(\epsilon_{\mathbf{k}}^{\mathbf{a}}) - n_{\mathbf{F}}(\epsilon_{\mathbf{k}+\mathbf{q}}^{\mathbf{b}})}{\epsilon_{\mathbf{k}}^{\mathbf{a}} - \epsilon_{\mathbf{k}+\mathbf{q}}^{\mathbf{b}}} \\ &+ \sum_{\mathbf{k}} \frac{n_{\mathbf{F}}(\epsilon_{\mathbf{k}}^{\mathbf{b}}) - n_{\mathbf{F}}(\epsilon_{\mathbf{k}+\mathbf{q}}^{\mathbf{a}})}{\epsilon_{\mathbf{k}}^{\mathbf{b}} - \epsilon_{\mathbf{k}+\mathbf{q}}^{\mathbf{a}}} + \sum_{\mathbf{k}} \frac{n_{\mathbf{F}}(\epsilon_{\mathbf{k}}^{\mathbf{b}}) - n_{\mathbf{F}}(\epsilon_{\mathbf{k}+\mathbf{q}}^{\mathbf{b}})}{\epsilon_{\mathbf{k}}^{\mathbf{b}} - \epsilon_{\mathbf{k}+\mathbf{q}}^{\mathbf{a}}} \end{split}$$

Inosov arXiv:0805.4105, arXiv:0807.3929

Electron susceptibility

Hall coefficient of 2H-TaSe₂ from ARPES

Evtushinsky PRL 2008

Band structure of 2H-NbSe₂

Modification of the nesting properties

Fermi surface of 2H-NbSe₂

Incommensurate CDW state in 2H-NbSe₂

T= 20 K

Fermi surface "arcs" in NbSe₂

Map of gaps, 20 K

Charge Density Waves compounds

1T-TaS₂, T₀= 550 K TiSe₂, T₀= 200 K 2H-TaSe₂, T₀= 122 K 2H-NbSe₂, T₀= 33 K 1T-TaSe₂, T₀= 473 K

Morosan et al. Nature Phys. 06

Pseudogap in dichalcogenides

 ✓ Incommensurate CDW causes a PG in one-particle excitation spectrum

 CDW formation depends crucially on electronic band structure

CDW and SC compete for the phase space

2D electronic structure of dichalcogenides is unstable to a density wave formation.

Are the dichalcogenides unique?
Ordering in cuprates

Pseudogap in 2H-TaSe₂ and Tb-BSCCO

Pseudogap in cuprates?

✓ PG and SG are two different gaps

 Pseudo-gap = Density modulation (incommensurate SDW)

 PG and SG compete for the phase space but both depend on electronic band structure

Ordering in La(Eu)SrCuO 1/8

Zabolotnyy arXiv:0809.2237

Ordering in La(Eu)SrCuO 1/8

Ĥ

$$V_{\rm s} = \langle \mathbf{k} | \hat{V}_{\rm s}(\mathbf{r}) | \mathbf{k} \pm \mathbf{Q}_{\rm s} \rangle, \text{ with } \mathbf{Q}_{\rm s} = (3\pi/4; \pi), \text{ and}$$
$$V_{\rm c} = \langle \mathbf{k} | \hat{V}_{\rm c}(\mathbf{r}) | \mathbf{k} \pm \mathbf{Q}_{\rm c} \rangle, \text{ with } \mathbf{Q}_{\rm c} = (\pi/4; 0) \langle \mathbf{k} \rangle$$

$$Y = \sum_{\mathbf{q} \in \text{RBZ} \atop m,n=0,...,7} (\delta_{m,n} \varepsilon_{\mathbf{q}+\mathbf{g}_m} + V_{m,n}) \hat{c}_{\mathbf{q}+\mathbf{g}_m}^{\dagger} \hat{c}_{\mathbf{q}+\mathbf{g}_n}, \text{ with}$$

$$V_{m,n}(\mathbf{q}) = \begin{pmatrix} 0 \ V_c \ 0 \ V_s \ 0 \ 0 \ 0 \ V_s \ V_s \ 0 \ 0 \ V_s \ V_s \ 0 \ V_c \ 0 \ V_s \ 0 \ V_s \ 0 \ V_s \ 0 \ V_c \ 0 \ V_s \ 0 \ V_$$

Zabolotnyy arXiv:0809.2237

It seems that the electronic structure of both cuprates and dichalcogenides is unstable to a density wave formation.

Are the cuprates and dichalcogenides unique in this sence?

Charge-orbital ordering and Fermi surface instabilities in $La_{0.5}Sr_{1.5}MnO_4$

Nesting-driven enhancement of the RKKY interaction in Gd₂PdSi₃ and Tb₂PdSi₃

Nesting-driven enhancement of the RKKY interaction in Gd₂PdSi₃ and Tb₂PdSi₃

Ordering in pnictides (BKFA)

(π, π) electronic order in pnictides

Fermi surface of pnictides (calculated)

Korshunov & Eremin MPI 2008 Singh arXiv:0803.0429 Mazin arXiv:0803.2740

Zabolotnyy Nature 2009

Zabolotnyy Nature 2009

Ba_{1-x}K_xFe₂As₂

Zabolotnyy Nature 2009

Evtushinsky NJP 2009

Evtushinsky NJP 2009

(π, π) electronic order

Ba_{1-x}K_xFe₂As₂

(π, π) electronic order: *T*-dependence

0 $k_v (\pi/b)$ 25 K

Evtushinsky NJP 2009

X

Fe BZ: (π, π)

Fe BZ: (0, π)

Fe BZ: (0, π) + (π , π) = (π , π) in As BZ

Fe BZ: (0, π) + (π , π) = (π , π) in As BZ

Fe BZ: $(0, \pi) + (\pi, \pi)$ = (π, π) in As BZ

Superconducting gap in BKFA

Gap values (meV)

Inner Г-barrel	9 ± 1
Outer Г-barrel	<4
X-pocket	9 ± 2
Blades	~ 9
Gap anisotropy	<1.5

Superconducting gap in BKFA

IEDC(
$$\omega$$
) = $\left[f(\omega, T) \cdot \left| \operatorname{Re} \frac{\omega - i\Sigma''}{E} \right| \right] \otimes R_{\omega}(\delta E)$

$$E = \sqrt{(\omega - i\Sigma'')^2 - \Delta_k^2}$$

Evtushinsky PRB 2009

Superconducting gap in BKFA

Evtushinsky PRB 2009
Superconducting gap in BKFA

Evtushinsky PRB 2009

Superconducting gap in BKFA

Inner Γ -barrel 9 ± 1 Outer Γ -barrel<4X-pocket 9 ± 2 Blades ~ 9 Gap anisotropy<1.5

Superconducting gap from ARPES & µSR

Evtushinsky NJP 2009

Superconducting gap from ARPES & µSR

Superconducting gap in BKFA

Gap values (meV)

Inner Г-barrel	9 ± 1
Outer Г-barrel	~ 2
X-pocket	9 ± 2
Blades	~ 9
Gap anisotropy	<1.5

- [3] D. V. Evtushinsky et. al., to appear in Phys. Rev. B R. Khasanov et. al., arXiv:0901.2329 (2009) T.Y. Chen et. al., Nature (London) 453, 1224 (2008) Yonglei Wang et. al., Supercond. Sci. Technol. 22, 015018 (2009) [7]P. Szabo et. al., Phys. Rev. B 79, 012503 (2009) R. S. Gonnelli et. al., arXiv:0807.3149 (2008) [9] P. Samuely et. al., Supercond. Sci. Technol. 22, 014003 (2009) [10] C. Liu et. al., arXiv:0806.2147 (2008) [11] H. Ding et. al., Europhys. Lett. 83, 47001 (2008) [12] Lin Zhao et. al., Chinese Phys. Lett. 25, 4402 (2008) Takeshi Kondo et. al., Phys. Rev. Lett. 101, 147003 (2008) [14] L. Wray et. al., arXiv:0808.2185 (2008) [15] K. Terashima et. al., arXiv:0812.3704 (2008) [16] S. Kawasaki et. al., Phys. Rev. B 78, 220506(R) (2008) [17] Cong Ren et. al., Phys. Rev. Lett. 101, 257006 (2008) [18] Masatoshi Hiraishi et. al., arXiv:0812.2069 (2008) [19] R. Khasanov et. al., Phys. Rev. B 78, 220510(R) (2008) [20] K. Hashimoto et. al., arXiv:0810.3506 (2008) [21] G. Li et. al., Phys. Rev. Lett. 101, 107004 (2008) [22] A. Dubroka et. al., Phys. Rev. Lett. 101, 097011 (2008) [23] Oded Millo et. al., Phys. Rev. B 78, 092505 (2008)
- [24] M. C. Boyer *et. al.*, arXiv:0806.4400 (2008)

Ordering in pnictides?

- ✓ Electron density in pnictides shows (π, π) ordering already in the normal state
- **?** Isn't a general property of 2D metals?

Pseudo-gap and Density Ordering in 2D Metals

- Uniform distribution of the electron density in 2D metal is usually unstable
- PG is a consequence of additional electronic ordering / propensity to ordering
- The parameters of this instability depends crucially on electronic band structure

Just an example: 2H-Cu_xTaSe₂

Just an example: 2H-Cu_xTaSe₂

Just an example: 2H-Cu_xTaSe₂

Thanks to:

Spectroscopy Group IFF, IFW Dresden

Sergey Borisenko, Volodya Zabolotny, Dima Inosov, Daniil Evtushinskiy, Timur Kim, Roland Hübel, Martin Knupfer, Jörg Fink, Bernd Büchner

Neutrons: Vladimir Hinkov, Bernhard Keimer (Stuttgart)

Theory: Alexander Yaresko, Iliya Eremin (Dresden), Thomas Dahm (Tübingen), Doug Scalapino (Santa Barbara)

Single Crystals

Helmut Berger Chengtian Lin S. Ono, Seiki Komiya, Yoichi Ando Sunseng Pyon, H. Takagi Andreas Erb EPFL Lausanne MPI Stuttgart CRIEPI Tokyo University of Tokyo WMI Garching

Synchrotron Light

Rolf Follath, Andrei Varykhalov Stefano Turchini, Cesare Grazioli Ming Shi, Luc Patthey

BESSY Berlin ELETTRA Trieste SLS Villigen