Electrons in cuprates: view by ARPES

22 K 77 K 132 K 168 K

220 K 276 K 318 K

A. A. Kordyuk
IFW Dresden & IMP Kiev
Intro

Occam's razor:

"entities should not be multiplied beyond necessity"

Eq.1:

HTSC = LDA + Self-energy + PG
Outline

I. LDA +

II. Self-energy structure

III. Self-energy origin: ARPES and INS

IV. Pseudo-gap
Outline

I. LDA +

II. Self-energy structure

III. Self-energy origin: ARPES and INS

IV. Pseudo-gap
 Kordyuk *PRB* 79, 020504(R) (2009)
HTSC = LDA + Self-energy + PG

BSCO (2212)
YBCO (123)
HTSC = LDA + quasiparticles?
HTSC = LDA + quasiparticles?

Borisenko *PRL* 2003
Photon energy – an important tool
Photon energy – an important tool

„Waterfalls“

 photon energy 81 eV

 photon energy 45 eV

 photon energy 64 eV

„Champagne glass“

HTSC = LDA + quasiparticles

$\nu = 27$ eV

Kordyuk *PRL* 2006
Quasiparticles?

\[A(\omega, k) = -\frac{1}{\pi} \frac{\Sigma''(\omega)}{(\omega - \varepsilon(k) - \Sigma'(\omega))^2 + \Sigma''(\omega)^2} \]

\[\Sigma'(\omega) = \omega - \varepsilon(k_m) \]

\[\Sigma''(\omega) = -v_F W(\omega) \]
Quasiparticles?

Voigt profile = Lorentzian \otimes Gaussian
Quasiparticles?

Evtushinsky PRB 2006
well or not well defined quasiparticles?

\[\Sigma''(\omega) \ll \omega \]
well or not well defined quasiparticles?

\[\Sigma''(\omega) - \Sigma''(0) \ll \omega \]

\[\frac{\Sigma''(\omega) - \Sigma''(0)}{\omega} \ll 1 \]
HTSC = LDA + quasiparticles

\[\rho_0 = \frac{m^*}{ne^2\tau} \approx \frac{k_F}{ne^2\eta} \frac{\Sigma_{im}}{v_r} \]

Evtushinsky PRB 2006
$\text{HTSC} = \text{LDA} + \text{quasiparticles}$

2 meV

20 meV

$n(x)$ problem

inhomogeneity

localization

PG
Self-energy structure

self-consistency means:

$$\Sigma' = KK \Sigma''$$
Self-energy structure: two channels

Kordyuk PRL 2004; PRL 2006
the only channel which reveals some energy scale is critically doping dependent → spin fluctuations
Self-energy structure: Eliashberg function

\[G \star \chi = \Sigma \]

Evtushinsky 2007
Self-energy structure

1. Self-energy = CHARGE + MAGNETIC
1. Self-energy = **CHARGE** + **MAGNETIC**

Self-energy structure
1. Self-energy = CHARGE + MAGNETIC

2. MAGNETIC (ω AND k AND T)?
Self-energy origin

ARPES and INS
Story of "fingerprints"

"fingerprints" of the phononic spectrum in tunneling differential conductance by Rowell *PRL* 1963
Eliashberg equations

$$\Delta (\omega) = \frac{1}{Z(\omega)} \int_0^{\omega_e} d\omega' \text{Re} \left\{ \frac{\Delta(\omega')}{(\omega'^2 - \Delta^2(\omega'))^{1/2}} \right\} [K_+(\omega',\omega) - N(0)U_c]$$

$$[1 - Z(\omega)] \omega = \int_0^{\omega_e} d\omega' \text{Re} \left\{ \frac{\omega'}{(\omega'^2 - \Delta^2(\omega'))^{1/2}} \right\} K_-(\omega',\omega)$$

$$K_{\pm}(\omega,\omega') = \sum_{\lambda} \int_0^{\omega_e} d\nu \alpha_{\lambda}^2(\nu) F_\lambda(\nu) \left[\frac{1}{\omega + \omega + \nu + i\delta} \pm \frac{1}{\omega' - \omega + \nu - i\delta} \right]$$

el-ph coupling constant phonon DOS

Scalapino PR 1966
What about HTSC?

✓ d-wave gap +
 anisotropic electronic structure +
 anisotropic spectra of phonons
 or magnons

require
 momentum resolved
 experimental techniques: ARPES, INS
Constituents of quasiparticle spectrum

\[A(k, \omega) \]

- bare electrons
- Green function

\[G_0(k, \omega) \]

\[\Sigma(k, \omega) \]

\[\Delta(k, \omega) \]

- self-energy
- superconducting gap
Constituents of quasiparticle spectrum

bare Green function: \[G_0(k, \omega) \] from ARPES

self-energy: \[\Sigma(k, \omega) \] from ARPES

\[G_0^{-1} + G \star \chi = G^{-1} \]

'bosonic' spectrum: \[\chi(q, \Omega) \] from INS
Constituents of quasiparticle spectrum

bare Green function: \(G_0(k, \omega) \) from ARPES

self-energy: \(\Sigma(k, \omega) \) from ARPES

\[
G_0^{-1} + G \star G \star G = G^{-1}
\]

itinerant SF: \(\chi(q, \Omega) \) from INS and ARPES
Spin-fluctuations: ARPES and INS

\[G_0^{-1} + G \star \chi = G^{-1} \]

\[G_0(k, \omega) \]

\[\chi(q, \Omega) \]

\[\Sigma(k, \omega) \]

IFW (ARPES) + Hinkov & Keimer (INS) + Dahm & Scalapino 2006
Spin-fluctuations: ARPES and INS
Spin-fluctuations: ARPES and INS

Spin-fluctuations: ARPES and INS

Spin-fluctuations: ARPES and INS

Spin-fluctuations: ARPES and INS

\[V_{\text{eff}}(Q, \Omega) = \frac{3}{2} \bar{U}^2 \chi(Q, \Omega) \]

\[\bar{U} = 1.59 \text{ eV} \]

\[\lambda_d = 1.39 \]

\[T_c = 174 \text{ K} \]

General conclusions

1. Spin-fluctuations well describe one-particle spectra in YBCO.

2. In particular, they solve the kink puzzle.

3. $T_c > 150$ K: spin fluctuations have sufficient strength to mediate high-temperature superconductivity.
Is it itinerant?

\[\chi = G \star G \]
Is it itinerant?

bare spin susceptibility (Lindhard function):

\[\chi_0(Q, i\Omega_n) = \frac{1}{\pi^2} \int \sum_m G(k, i\omega_m)G(k + Q, i\omega_m + i\Omega_n) dk \]

dynamic spin susceptibility (RPA):

\[\chi^{0,e}(Q, \Omega) = \chi^{0,e}_0(Q, \Omega)/\left[1 - J^{0,e}_Q \chi^{0,e}_0(Q, \Omega)\right] \]

effective Hubbard interaction:

\[J^{0,e}_Q = -J_{||}(\cos Q_x + \cos Q_y) \pm J_{\perp} \]

Inosov PRB 2007
Is it itinerant?

- Figure a) shows a graph with two peaks labeled 'odd (42 meV)' and 'even (55 meV)'.
- Figure b) is a graph with energy in meV and wave vectors in r.l.u.
- Figures c), d), and e) are contour plots with energies of 20 meV, 42 meV, and 60 meV, respectively.
\[\Sigma(k, \omega) \]
\[G_0^{-1} + G \star G \star G = G^{-1} \]
\[\chi(q, \Omega) \]
Pseudo-gap in BSCCO
Non-monotonic pseudo-gap in BSCCO

Kordyuk PRB (2009)
Non-monotonic pseudo-gap in BSCCO

Kordyuk *PRB* (2009)
Non-monotonic pseudo-gap in BSCCO

Kordyuk *PRB* (2009)
Non-monotonic pseudo-gap in BSCCO

Kordyuk *PRB* (2009)

Borisenko *PRL* (2008)
2H-TaSe$_2$ crystal structure, CDW transitions

- 2nd-order transition to an incommensurate CDW at $T_{\text{NIC}} = 122$ K
- 1st-order lock-in transition to a 3x3 commensurate CDW at $T_{\text{ICC}} = 90$ K
Fermi surface: commensurate CDW state

Borisenko *PRL* 2008

Craven & Meyer *PRB* 1977
Pseudogap in 2H-TaSe$_2$ and Tb-BSCCO

![Graphs showing temperature vs. pseudogap for 2H-TaSe$_2$ and Tb-BSCCO](image)

- T_{IC}
- T_{N}
- T_{*}

Fermi surface angle (°) and Leading edge position (meV) are plotted for different temperatures and doped states.
Non-monotonic pseudo-gap in BSCCO

Kordyuk *PRB* (2009)
Pseudo-gap competes with SG

Kondo Nature (2009)
General conclusions

1. HTSC = LDA + PG + Self-energy = QP spectrum
General conclusions

1. HTSC = LDA + PG + Self-energy

2. Self-energy = CHARGE + MAGNETIC
General conclusions

1. HTSC = LDA + PG + Self-energy

2. Self-energy = CHARGE + MAGNETIC + phonons
1. HTSC = LDA + PG + Self-energy = QP spectrum
2. Self-energy = CHARGE + MAGNETIC
3. MAGNETIC = QP spectrum + SF spectrum
General conclusions

1. HTSC = LDA + PG + Self-energy = QP spectrum

2. Self-energy = CHARGE + MAGNETIC

3. MAGNETIC = QP spectrum ★ SF spectrum

\(T_c = 150 \text{ K} \)
General conclusions

1. HTSC = LDA + PG + Self-energy = QP spectrum

2. Self-energy = CHARGE + MAGNETIC

3. MAGNETIC = QP spectrum ★ SF spectrum

4. PG = Electron density modulation =
 = incommensurate xDW ($x = \text{C, D, S...}$)

$T_c = 150 \text{ K}$
Outlook

1. \(x\text{DW in cupates: } x = C, D, S \text{ or ... ?} \)

2. How \(x\text{DW competes with SC?} \)

3. What is PG origin at height \(T \)?

4. How general is DW in 2D?
How general is DW in 2D?

CDW crossovers in dichalcogenides

Charge-orbital ordering in $\text{La}_{0.5}\text{Sr}_{1.5}\text{MnO}_4$

Nesting-driven magnetic ordering in rare earth silicides

(π, π) electronic order in pnictides

References:
- Borisenko, PRL 2008
- Evtushinsky, PRL 2008
- Inosov, PRL 2009
- Evtushinsky, 2008
- Borisenko, PRL 2008
- Evtushinsky, PRB 2009
- Zabolotnyy, Nature 2009
- Evtushinsky, PRB 2009
Thanks to:

Spectroscopy Group IFF, IFW Dresden

Sergey Borisenko,
Volodya Zabolotny, Dima Inosov, Daniil Evtushinsky, Roman Schuster
Roland Hübel, Martin Knupfer, Jörg Fink, Bernd Büchner

Neutrons:
Vladimir Hinkov, Bernhard Keimer (Stuttgart)

Theory:
Alexander Yaresko, Iliya Eremin (Dresden),
Thomas Dähm (Tübingen), Doug Scalapino (Santa Barbara)
Single Crystals

Helmut Berger
Chengtian Lin
S. Ono, Seiki Komiya, Yoichi Ando
Andreas Erb

EPFL Lausanne
MPI Stuttgart
CRIEPI Tokyo
WMI Garching
Synchrotron Light

Rolf Follath, Andrei Varykhalov
Ming Shi, Luc Patthey

BESSY Berlin
SLS Villigen