Electrons in cuprates: view by ARPES

A. A. Kordyuk IFW Dresden & IMP Kiev

Occam's razor:

"entities should not be multiplied beyond necessity"

Eq.1:

HTSC = LDA + Self-energy + PG

- I. LDA +
- II. Self-energy structure
- III. Self-energy origin: ARPES and INS
- IV. Pseudo-gap

- I. LDA +
- II. Self-energy structure
- III. Self-energy origin: ARPES and INS Dahm *Nature Phys.* 5, xxx (2009) IV. Pseudo-gap

Kordyuk *PRB* **79**, 020504(R) (2009)

HTSC = LDA + Self-energy + PG

HTSC = LDA + quasiparticles?

HTSC = LDA + quasiparticles?

2006

2002

Borisenko PRL 2003

Photon energy – an important tool

Kordyuk PRB 2004

Photon energy – an important tool

Inosov PRL 2007, PRB 2008

HTSC = LDA + quasiparticles

Kordyuk PRL 2006

Quasiparticles ?

$$A(\omega, \mathbf{k}) = -\frac{1}{\pi} \frac{\Sigma''(\omega)}{(\omega - \varepsilon(\mathbf{k}) - \Sigma'(\omega))^2 + \Sigma''(\omega)^2}$$

 $\Sigma'(\omega) = \omega - \varepsilon(k_m)$ $\Sigma''(\omega) = -v_F W(\omega)$

Quasiparticles ?

Voigt profile = Lorentzian & Gaussian

Quasiparticles ?

well or not well defined quasiparticles ?

well or not well defined quasiparticles ?

 $\Sigma^{\prime\prime}(\omega) - \Sigma^{\prime\prime}(0) \ll \omega$

 $\underline{\Sigma^{\prime\prime}(\omega) - \Sigma^{\prime\prime}(0)}$ ω

OP 89 K, T = 30 K
 OP 89 K, T ≈ 110 K
 OD 75 K, T ≈ 90 K

HTSC = LDA + quasiparticles

HTSC = LDA + quasiparticles

n(x) problem ? inhomogeneity localization PG

self-consistency means:

$\Sigma' = KK \Sigma''$

Kordyuk PRB 2005

Self-energy structure: two channels

Kordyuk PRL 2004; PRL 2006

Self-energy structure: two channels

the only channel which reveals some energy scale is critically doping dependent → spin fluctuations

Kordyuk PRL 2004; PRL 2006

Self-energy structure: Eliashberg function

Evtushinsky 2007

1. Self-energy = CHARGE + MAGNETIC

1. Self-energy = CHARGE + MAGNETIC

X

1. Self-energy = CHARGE + MAGNETIC 2. MAGNETIC (ω and k and 7)?

Self-energy origin ARPES and INS

Story of "fingerprints"

"fingerprints" of the phononic spectrum in tunneling differential conductance by Rowell *PRL* 1963

Eliashberg equations

$$\Delta(\omega) = \frac{1}{Z(\omega)} \int_0^{\omega_c} d\omega' \operatorname{Re}\left\{\frac{\Delta(\omega')}{(\omega'^2 - \Delta^2(\omega'))^{1/2}}\right\} \left[K_+(\omega', \omega) - N(0)U_c\right]$$

$$\begin{bmatrix} 1 - Z(\omega) \end{bmatrix} \omega = \int_0^\infty d\omega' \operatorname{Re} \left\{ \frac{\omega'}{(\omega'^2 - \Delta^2(\omega'))^{1/2}} \right\} K_-(\omega', \omega)$$

$$K_{\pm}(\omega,\omega') = \sum_{\lambda} \int_{0}^{\infty} d\nu \, \alpha_{\lambda}^{2}(\nu) F_{\lambda}(\nu) \left[\frac{1}{\omega' + \omega + \nu + i\delta} \pm \frac{1}{\omega' - \omega + \nu - i\delta} \right]$$

el-ph coupling constant phonon DOS

Scalapino PR 1966

What about HTSC?

d-wave gap + anisotropic electronic structure + anisotropic spectra of phonons or magnons

require momentum resolved experimental techniques: ARPES, INS

Constituents of quasiparticle spectrum

Constituents of quasiparticle spectrum

bare Green function: $G_0(\mathbf{k}, \omega)$ from ARPES

self-energy: $\Sigma(\mathbf{k}, \omega)$ from ARPES and INS $G_0^{-1} + G \star \chi = G^{-1}$

'bosonic' spectrum: $\chi(\mathbf{q}, \Omega)$ from INS

Constituents of quasiparticle spectrum

bare Green function: $G_0(\mathbf{k}, \omega)$ from ARPES

self-energy: $\Sigma(\mathbf{k},\omega)$ from ARPES $G_0^{-1} + G \star G \star G = G^{-1}$ from INS ittinerant SF: $\chi(\mathbf{q}, \Omega)$ and ARPES

 $G_0^{-1} + G \star \chi = G^{-1}$

IFW (ARPES) + Hinkov & Keimer (INS) + Dahm & Scalapino 2006

 $V_{\rm eff}(\mathbf{Q},\Omega) = \frac{3}{2} \, \bar{U}^2 \, \chi(\mathbf{Q},\Omega)$

$$\tilde{U} = 1.59 \text{ eV}$$

 $\lambda_d = 1.39$

$$T_{\rm c} = 174 \, {\rm K}$$

- 1. Spin-fluctuations well describe one-particle spectra in YBCO.
- 2. In particular, they solve the kink puzzle.
- 3. $T_c > 150$ K: spin fluctuations have sufficient strength to mediate high-temperature superconductivity.

Is it itinerant?

Is it itinerant?

bare spin susceptibility (Lindhard function):

$$\chi_0(\mathbf{Q}, i\Omega_n) = \frac{1}{\pi^2} \int \sum_m G(\mathbf{k}, i\omega_m) G(\mathbf{k} + \mathbf{Q}, i\omega_m + i\Omega_n) d\mathbf{k}$$

dynamic spin susceptibility (RPA):

 $\chi^{\mathrm{o},\mathrm{e}}(\mathbf{Q},\Omega) = \chi_0^{\mathrm{o},\mathrm{e}}(\mathbf{Q},\Omega) / [1 - J_Q^{\mathrm{o},\mathrm{e}}\chi_0^{\mathrm{o},\mathrm{e}}(\mathbf{Q},\Omega)]$

effective Hubbard interaction:

$$J_Q^{\text{o,e}} = -J_{\parallel}(\cos Q_x + \cos Q_y) \pm J_{\perp}$$

Inosov PRB 2007

Is it itinerant?

Inosov PRB 2007

PG ?

Pseudo-gap in BSCCO

Kordyuk PRB (2009)

Borisenko PRL (2008)

2H-TaSe₂ crystal structure, CDW transitions

• 1st-order lock-in transition to a 3x3 commensurate CDW at T_{ICC} = 90 K

Fermi surface: commensurate CDW state

Pseudogap in 2H-TaSe₂ and Tb-BSCCO

Pseudo-gap competes with SG

Kondo Nature (2009)

1. HTSC = LDA + PG + Self-energy = $\frac{QP}{spectrum}$

HTSC = LDA + PG + Self-energy Self-energy = CHARGE + MAGNETIC

1. HTSC = LDA + PG + Self-energy

2. Self-energy = CHARGE + MAGNETIC + phonone

4. PG = Electron density modulation =
= incommensurate xDW (x = C, D, S...)

- 1. xDW in cupates: $x = C, D, S \text{ or } \dots$?
- 2. How xDW competes with SC ?
- 3. What is PG origin at hight 7 ?
- 4. How general is DW in 2D ?

How general is DW in 2D?

2009 2009

Thanks to:

Spectroscopy Group IFE, IFW Dresden

Sergey Borisenko, Volodya Zabolotny, Dima Inosov, Daniil Evtushinskiy, Rom Roland Hübel, Martin Knupfer, Jörg Jink, Bernd Büchner

Neutrons: Vladimir Hinkov, Bernhard Keimer (Stuttgart)

Theory: Alexander Yaresko, Iliya Eremin (Dresden), Thomas Dahm (Tübingen), Doug Scalapino (Santa Barbara)

Single Crystals

Helmut Berger Chengtian Lin S. Ono, Seiki Komiya, Yoichi Ando Andreas Erb EPFL Lausanne MPI Stuttgart CRIEPI Tokyo WMI Garching

Synchrotron Light

Rolf Follath, Andrei Varykhalov Ming Shi, Luc Patthey

BESSY Berlin SLS Villigen