Mystery of HTSC: ARPES vs. Nature

Alexander Kordyuk

Institute of Metal Physics, Kiev, Ukraine

Navigation

HTSC are complex

ARPES is simple

ARPES in Dresden

Complex structure vs complex physics

What is complex: Antinodal region

What is simple: Nodal region

Introduction to HTSC physics

HTSC physics is complex

HTSC physics is located in simple CuO planes

...simple CuO planes

LDA \implies Simple metal

Experiment isolator - AF Mott isolator

Hole dopping

- FL Fermi Liqiud
- MFL Marginal Fermi Liqiud
 - PG Pseudo Gap state

 $Bi_2Sr_2CaCu_2O_{8+\delta}$

Ca

Phase diagram: open questions

Complexity of properties

requires

a powerfull experimental technique

Phase diagram from a Mapping of the In-Plane Resistivity Curvature

Ando PRL 2004

Phase diagram from a Mapping of the In-Plane Resistivity Curvature

Ando PRL 2004

Modern momentum resolving techniques

ARPES

STS

INS

Introduction to ARPES

the most direct tool to explore the momentum-energy space of the electrons in solids

Photoemission Spectrum

Angle-Resolved Photoemission (ARPES)

Angle Resolved Analyser

Angle

Sample

ARPES with Synchrotron Light

Damascelli RMP 2003

Basics: electron dispersion

Borisenko PRB 2001

Precise Cryo-Manipulator

0.1° precision

 \square

15 K < T < 400 K

UHV

Fermi-surface map

Momentum-energy space

Borisenko PRB 2001

Momentum Distribution Map OD 69K - 0.1 eV Eμ 0.1 0.2

Kordyuk 2000

Momentum-energy space explorer today

ELETTRA

more synchrotrons

SLS

...travelling chamber

The advantages of our group

why Bi(Pb)-2212 is the best of the cuprates to be explored by ARPES

Pb or not Pb?

Bi2212

The region we explore

The region we explore

The region we explore

Complex structure *VS* complex physics

I. Fermi surface

Borisenko PRL 2000

Kordyuk PRB 2002

k_x (A⁻¹) Bogdanov *PRL* 2000

Damascelli RMP 2003

Fermi surface of Bi(Pb)-2212: doping dependence

Kordyuk PRB 2002

A set of superstructure-free Bi(Pb)-2212 in a wide doping range with known doping level

Kordyuk PRB 2002
II. Band structure: TBF

 $\varepsilon(k_x, k_y) = \Delta \varepsilon - 2t(\cos k_x + \cos k_y) + 4t' \cos k_x \cos k_y - 2t''(\cos 2k_x + \cos 2k_y)$

Bare band structure

High precision Fermi surface mapping

Bilayer splitting in OP Bi-2212 in normal state

Momentum

Momentum

Energy

Momentum

Energy

- 1. Physics of HTSC is not so complex as believed but electronic structure is.
- 2. Large Fermi surface and metallic behavior implies a phase separation.
- 3. The superconductivity which occurs in the metallic phase and is highly influenced by electronic structure.
- 4. What is complex then?

Key regions

Energy

Energy

Momentum

Momentum

Saddle point

(π,0)

Excitation energy variation: PDH in OD

Excitation energy variation: PDH in OD

Antinodal region (XMY)

Antinodal or "XMY cut"

Interaction with a mode

Borisenko PRL 2003

Interaction with a mode

Kim *PRL* 2003

Antinodal electrons couple to ...

how it works

Nodal direction (GX)

"Kinks"

0.0

-0.1

-0.2

Energy (eV)

0-

-100

-200-

0

-100

-200-

.

ω (meV)

0.00 8

Lanzara Nature 2001

0.00

Johnson PRL 2001

60

Effective Re₂ (meV)

Zhou cond-mat 2004

One complication: nodal splitting

Nodal splitting

$\Delta k = 0.012 \text{ 1/Å}$ $\Delta \varepsilon = 50 \text{ meV} \text{ (bare!)}$

Bare Dispersion

and

real Real Part of the Self-Energy (Renormalization)

Bare dispersion

Self-energy approach

$$A(\omega, \mathbf{k}) = -\frac{1}{\pi} \frac{\Sigma''(\omega)}{(\omega - \varepsilon(\mathbf{k}) - \Sigma'(\omega))^2 + \Sigma''(\omega)^2}$$

$$\Sigma'(\omega) = \omega - \varepsilon(k_m)$$
$$\Sigma''(\omega) = -v_F W(\omega)$$

Self-energy approach

$$\Sigma'(\omega) = \frac{v_F}{2} (k_m^2(\omega) - k_F^2) + \omega,$$

$$\Sigma''(\omega) = -v_F W(\omega) \sqrt{k_m^2(\omega) - W^2(\omega)}.$$

^

$$\Sigma'(\omega) = KK \Sigma''(\omega)$$

Kramers-Kronig transform

 $\Sigma'(\omega) = KK \Sigma''(\omega)$

Bare dispersion

Self-consistency: LDA + self-energy

Well defined quasiparticles

Kink phenomenology

"Kinks"

Lanzara Nature 2001

Johnson PRL 2001

Phenomenology of the kink

Imaginary Part of the Self-Energy

or

Quasiparticle Scattering Rate

Scattering rate kink

Scattering rate: T-dependence

T-dependence

Doping dependence

Scattering rate kink

Scattering rate: Some conclusions

There are two channels: 1st electron-electron scattering and 2nd electron-boson scattering

Parity
Circular dichroism in nodal region

Circular dichroism in nodal region

Circular dichroism in nodal region

Odd scattering

Nodal electrons couple to ...

Conclusions

• The spectral function analysis is applicable to the ARPES spectra from HTSC cuprates.

- Along the nodal direction well defined quasiparticles exist even for the underdoped Bi-2212 in the pseudogap state.
- Two channels in the scattering rate can be distinguished.
- The main doping independent contribution to the scattering can be well understood in terms of the conventional Fermi liquid model...
- ...while the additional doping dependent contribution has a magnetic origin.

• The magnetic contribution essentially increases with underdoping becoming dominant for the rest of the Brillouin zone and therefore determines the unusual properties of the cuprates in the superconducting and pseudo-gap phases.

Outlook

- Band structure
- Increased accuracy
- Lower doping level
- $AF \leftrightarrow SC \leftrightarrow Metal$
- Shadow band
- Origin
- SB(x), SB(Tc)
- Mode(k,T,x,s)
- Origin
 - Node ? Antinode
 - SG ? PG ? AFG
 - k-dependence

• Gaps

Thanks to:

Spectroscopy Group IFF, IFW Dresden

Sergey Borisenko

Thanks to:

Spectroscopy Group IFE, IFW Dresden

Sergey Borisenko,

Andreas Koitzsch, Vladimir Zabolotny, Jochen Geck, Roland Hübel, Martin Knupfer, Jörg Fink,

Mark Golden (Amsterdam), Timur Kim (Aarhus)

Single Crystals

Helmut Berger Chengtian Lin, Bernhard Keimer S. Ono, Yoichi Ando EPFL Lausanne MPI Stuttgart CRIEPI Tokyo

Synchrotron Light

Rolf Follath Stefano Turchini, Cesare Grazioli Ming Shi, Luc Patthey

BESSY Berlin ELETTRA Trieste SLS Villigen

THE END
