New finding in electronic properties of superconducting cuprates from nodal photoemission spectra

Alexander Kordyuk

IFW Dresden, Germany IMP Kyiv, Ukraine

Thanks to:

Spectroscopy Group IFF, IFW Dresden

Sergey Borisenko, Timur Kim, Andreas Koitzsch, Roland Hübel, Martin Knupfer, Jörg Fink

Experimental collaboration, single crystals

Rolf Follath Helmut Berger Chengtian Lin, Bernhard Keimer S. Ono, Yoichi Ando BESSY Berlin EPFL Lausanne MPI Stuttgart CRIEPI Tokyo

Band structure calculations

Alexander Yaresko Stefan-Ludwig Drechsler MPI-PKS Dresden IFW Dresden

Navigation

Introduction to ARPES

The advantages of our group

Electronic band structure

Antinodal region

Nodal region

Last century ARPES

Today in Dresden

Today

(k,ω)-space explorer today

Precise Cryo-Manipulator

Fermi-surface map

Superstructure free samples...

Bi2212

... in a wide doping range

Kordyuk PRB 2002

Band structure: TBF

 $\varepsilon(k_x, k_y) = \Delta \varepsilon - 2t(\cos k_x + \cos k_y) + 4t' \cos k_x \cos k_y - 2t''(\cos 2k_x + \cos 2k_y)$

Kordyuk PRB 2003

High precision Fermi surface mapping

Bilayer splitting in OP Bi-2212 in normal state

Momentum

Momentum

Energy

Momentum

Energy

Bare band structure

Kordyuk PRB 2003

Excitation energy variation: PDH in OD

Kordyuk PRL 2002

Excitation energy variation: PDH in OD

Kordyuk PRL 2002

Key regions

Energy

Momentum

Momentum

"XMY cut"

Interaction with a mode

Borisenko PRL 2003

Interaction with a mode

Kim *PRL* 2003

Electrons couple to ...

GX

Basics: electron dispersion

Nodal splitting

 $\Delta k = 0.012 \ 1/\text{\AA}$ $\Delta \varepsilon = 50 \ \text{meV}$

Bare dispersion

Self-energy approach

$$A(\omega, \mathbf{k}) = -\frac{1}{\pi} \frac{\Sigma''(\omega)}{(\omega - \varepsilon(\mathbf{k}) - \Sigma'(\omega))^2 + \Sigma''(\omega)^2}$$

$$\Sigma'(\omega) = \omega - \varepsilon(k_m)$$
$$\Sigma''(\omega) = -v_F W(\omega)$$

Self-energy approach

$$\Sigma'(\omega) = \frac{v_F}{2} (k_m^2(\omega) - k_F^2) + \omega,$$

$$\Sigma''(\omega) = -v_F W(\omega) \sqrt{k_m^2(\omega) - W^2(\omega)}.$$

$$\Sigma'(\omega) = \mathrm{KK} \Sigma''(\omega)$$

Bare dispersion

Scattering rate kink

Kordyuk PRL 2004

Scattering rate kink

Kordyuk PRL 2004

Circular dichroism in nodal region

Circular dichroism in nodal region

Circular dichroism in nodal region

Odd scattering

Conclusions

• The spectral function analysis is applicable to the ARPES spectra from HTSC cuprates.

- Along the nodal direction well defined quasiparticles exist even for the underdoped Bi-2212 in the pseudogap state.
- Two channels in the scattering rate can be distinguished.
- The main doping independent contribution to the scattering can be well understood in terms of the conventional Fermi liquid model...
- ...while the additional doping dependent contribution has a magnetic origin.

• The magnetic contribution essentially increases with underdoping becoming dominant for the rest of the Brillouin zone and therefore determines the unusual properties of the cuprates in the superconducting and pseudo-gap phases.