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1. INTRODUCTION 

Currently, much attention is paid to the study of quantum proper-
ties of systems with a small number of particles, such as quantum 
dots, other mesoscopic objects and nanostructures. In this regard, 
the problem of describing such objects with taking into account 
their interaction with the external environment is of current im-
portance. 
 Statistical description is usually used to study systems with very 
large numbers of particles. Nevertheless, statistical methods of de-
scription can be also used in the study of equilibrium states of sys-
tems with a small number of particles and even one particle. When 

Наносистеми, наноматеріали, нанотехнології  
Nanosistemi, Nanomateriali, Nanotehnologii 
2025, т. 23, № 1, сс. 1–12 
https://doi.org/10.15407/nnn.23.01.0001 

 2025 ІÌÔ (Іíñòèòóò ìåòàëîôіçèêè  

іì. Ã. Â. Êóðäþìîâà ÍÀÍ Óêðàїíи) 
Надруковано в Óкраїні. 

https://doi.org/10.15407/nnn.23.01.0001
https://doi.org/10.15407/nnn.23.01.0001
https://doi.org/10.15407/nnn.23.01.0001


2 Yu. M. POLUEKTOV and O. O. SOROKA 

considering a system within the grand canonical ensemble, it is as-
sumed that it is a part of a very large system, a thermostat, with 
which it can exchange energy and particles. The thermostat itself is 
characterized by such statistical quantities as temperature T and 
chemical potential . Assuming that the subsystem under considera-
tion is in thermodynamic equilibrium with the thermostat, the sub-
system itself is characterized by the same values, even if it consists 
of a small number of particles. For example, we can consider the 
thermodynamics of an individual quantum oscillator [1]. In the 
case, when an exchange of particles with a thermostat is possible, 
the time-averaged number of particles of a small subsystem may be 
not an integer and, in particular, even less than unity. 
 In statistical physics, the entropy and distribution functions of 
particles over quantum states are calculated under the assumption 
that the number of particles is very large. This consideration for 
fermions leads to the Fermi–Dirac distribution, and for bosons, it 
leads to the Bose–Einstein distribution [1]. 
 In this work, the entropy and distribution functions of non-
interacting particles are calculated in the case when no restrictions 
are imposed on their number in a system being in thermodynamic 
equilibrium with the environment. In particular, the number of par-
ticles can be small, and not an integer and even less than unity. 
Equations determining the distribution functions of fermions and 
bosons are obtained, and their differences from the standard Fer-
mi–Dirac and Bose–Einstein distributions are analysed. A feature 
of the obtained exact distribution functions, in comparison with the 
distributions found in the limit of a large number of particles, is 
the presence of energy boundaries, beyond which the average num-
ber of particles at all levels turns to zero or unity. 

2. ENTROPY AND DISTRIBUTION FUNCTION OF FERMIONS 

Let us consider a quantum system of fermions whose energy levels 
j have the multiplicity of degeneracy zj. If at each level j there are 

j jN z  particles, then, the statistical weight of such a state in the 
case of Fermi–Dirac statistics is given by the well-known formula 
[1]: 
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 The entropy is defined as the logarithm of the total statistical 
weight by the relation: 

          
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S z N z N . (2) 
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 To calculate all factorials under assumption N1 and z1, the 
Stirling’s formula [2] is usually used in the form 

 ln( !) ln( )N N N e . (3) 

 When studying systems with small N, the accuracy of this for-
mula is insufficient. Therefore, for example, with N  16, its accu-
racy is 7.5%. For N1, 2, there are negative numbers on the right 
in (3). For small N, one can use a more accurate formula: 

 
 

   
 

ln( !) ln ln 2
N

N N N
e

. (4) 

 For N16, its accuracy is already 0.017%; for ln(2!) 0.693 , 

this formula gives a value of 0.652. Taking into account the more 

accurate formula (4), for the entropy 
j

j

S S  , we obtain the ex-

pressions: 

           
1

ln( ) (1 ) ln(1 ) ln 2 (1 )
2

j j j j j j j j jS z n n n n z n n . (5) 

Here, njNj/zj is the average number of particles at level j (or the 
population of the level). This formula differs from the usual formu-
la for the entropy of a Fermi gas [1] by the last term. Taking into 
account that the total number of particles N and the total energy E 
are determined by the formulae: 

 
j j j

j j

N N n z   , (6) 

 
j j j j j

j j

E N n z     , (7) 

the average number of particles in each state is found from the 
condition: 

   0
j

S N E
n


    


, (8) 

where ,  are the Lagrange multipliers. From here, we find the 
equation determining the average number of particles in a state j: 

 
   

              

1 1 1 1
ln

2 1

j

j

j j j j

n

n z n n
. (9) 

 Neglecting the second term on the left side, we obtain the usual 
Fermi–Dirac distribution: 
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jn e . (10) 

 From comparison with thermodynamic relations, it follows that 
/T, 1/T (T—temperature, —chemical potential), so that 
    ( )j j T . In the absence of a magnetic field, for particles with 
spin 1/2, the smallest multiplicity of degeneracy only in the spin 
projection is equal to two. With zi1, the second term on the left 
in Eq. (9) can be taken into account as a small correction, so that, 
in this approximation, the distribution function will take the form: 
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 For an arbitrary, including small and non-integer, number of 
particles N, the factorial should be determined through the gamma 
function (x): 

 ! ( 1)N N   . (12) 

In this case, the statistical weight (1) is also expressed through the 
gamma function: 
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j j j

z
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 Some formulae for the gamma function as well as formulae relat-
ed to it are given in the Appendix. With allowance for Eq. (13), for 

the nonequilibrium entropy 
j

j

S S  , there follows the formula: 

                 ln ( 1) ln (1 ) 1 ln ( 1)j j j j j jS z n z n z . (14) 

 It is obvious that the contribution to the total entropy comes only 
from partially occupied levels, for which 0nj1. In this case, 
when nj0, 1, from the condition (8), we find the equation that de-
termines the average number of particles in each state: 

  
  

        (1 ) 1 ( 1) ( )
j

j j j j j jz n z n n
T

, (15) 

where (z) is the logarithmic derivative of the gamma function (the 
psi function) (A4). If we use the asymptotic formulae (A3) and (A6) 
given in the Appendix, then, formula (14) will turn into (5), and 
formula (15) will turn into (9). Using formula (A11), Eqs. (15) can 
be written in the form 
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Note that, here, the series converges rather slowly and the rate of 
its convergence decreases with increasing zj; so, for calculations, it 
is more convenient to use formulae (15). 
 The forms of distribution functions for a system of Fermi parti-
cles at z2, z10 and arbitrary j  are shown in Fig. 1. The de-
pendence n() obtained from Eq. (9) with 

         1 1
ln (1 ) (1 2 ) (1 )j j j j j jn n z n n  

(curves 2 in Fig. 1) turns out to be multiple-valued and leads to a 
significant discrepancy with the calculation performed using the 
exact formulae (15) (curves 1 in Fig. 1), so that Eq. (9) turns out to 
be inapplicable for calculating average occupation numbers. In the 
standard Fermi–Dirac distribution (10) (curves 4 in Fig. 1), for an 
arbitrary value of the parameter  (     ), the distribution 
function does not turn exactly to zero or unity. At , the dis-
tribution function exponentially tends to zero: n() e


, and at 

, it tends to unity: n() 1e

). 

 A feature of the exact distribution function defined by Eqs. (15), 
(16) is the limited range of values of the parameter j, in which the 

 
a      b 

Fig. 1. Distribution function of Fermi particles, n(), over states in vari-
ous approximations with multiplicities of level degeneracy: (a) z2, (b) 
z10. 1—distribution function (DF) calculated using the exact formula 
(15); 2—DF calculated using approximate Eq. (9); 3—DF calculated using 
formula (11); 4—conventional Fermi–Dirac DF (10). 
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function is different from 0 or 1. In this case, jminjjmax, where 

 



          1

max min

1

( 1) (1)
jz

j j j

k

z k . (17) 

 At 
maxj j   , the average number of particles at level j becomes 

zero (nj0), and at minj j   , it is equal to unity (nj1). Thus, for 
given values of T and , the population of level j is different from 
zero and unity, when there is fulfilled the inequality 

       
max max

( )j j jT . (18) 

 All the other levels remain either empty or completely occupied, 
so that there is only a finite number of partially occupied levels, 
and their number increases with increasing temperature. 
 The approximate expression for the distribution function (11) 
(curves 3 in Fig. 1) following from formula (9) gives a good approx-
imation to the exact dependence (curves 1 in Fig. 1). However, at 
points where the exact distribution function becomes zero and uni-
ty, the approximate function (11) is different from these values and 
exists for all values of the parameter . The difference between the 
exact distribution (15) (curves 1 in Fig. 1) and the usual Fermi–
Dirac distribution (10) (curves 4 in Fig. 1) is more significant: the 
larger the absolute value of the parameter  and the smaller the de-
generacy factor z. 
 Equation (15) and approximate formula (11) determine the aver-
age number of particles in a state j as a function of temperature 
and chemical potential: ( , )j jn n T  . A substitution of these func-
tions into Eqs. (6), (7), (14) gives equilibrium values of the entropy 

( , )S S T  , the energy ( , )E E T  , and the number of particles 
( , )N N T   as functions of temperature and chemical potential. 

These quantities are natural variables for the large thermodynamic 
potential, which can be defined by the usual expression 

 ( , ) ( , ) ( , ) ( , )T E T TS T N T         ; (19) 

so, at a constant volume, there holds the well-known identity 
d SdT Nd     . 
 For a fixed total number of particles N, Eqs. (15) are not inde-
pendent, since the populations of the levels are linked by the rela-
tion (6). If the total number of particles is such that they can com-

pletely occupy the lower j levels, and the level j1 turns out to be 

occupied partially, so that 
  11

j

k jk
N z N  and 1 1

0 j jN z   , 

then, at T0 K, the chemical potential takes the value 1
.j    
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Near zero temperature, 
1 1 1 1

( )j j j jT N z
   

     . 

 The entropy at zero temperature turns to zero only in the case 
when all levels are completely occupied or empty. In the presence of 
an unoccupied level, the entropy at T0 K is different from zero. 
Thus, the third law of thermodynamics is always satisfied in the 
Nernst formulation, according to which all processes at zero tem-
perature occur at constant entropy. Moreover, in the Planck formu-
lation, which requires turning of the entropy to zero, the third law 
is satisfied only in the case of completely occupied levels. 

3. ENTROPY AND DISTRIBUTION FUNCTION OF BOSONS 

If at each level of a boson system with the multiplicity of degenera-
cy zj there are Nj particles, then, the statistical weight of such a 
state in the Bose–Einstein statistics [1] is as follows: 

 
 

 


( 1) !

!( 1) !

j j

j

j j

z N

N z
. (20) 

 The entropy is defined by the relation 

   

  

         
   

ln( )

ln( ) ln ( 1) ! ln( !) ln ( 1) !j j j j j j

j j j

S

S z N N z
. (21) 

 It should be noted that, if the level is not degenerate (zj1) or 
not occupied (Nj0), then, as in the above considered case of Fer-
mi–Dirac statistics (1), 1j  , and it does not contribute to the 
total entropy. Using the Stirling’s formula (4), we have 

   

         

        

( 1) ln( 1) ln( ) ( 1) ln( 1)

1 1 1
ln 2 ( 1) ln(2 ) ln 2 ( 1) .

2 2 2

j j j j j j j j j j j j j

j j j j j j

S z z n z z n z n z n z z

z z n z n z
 (22) 

 Then, from condition (8), it follows the equation for the distribu-
tion function over states: 

 
    

               

1 1 1
ln

2 1

j j j j

j

j j j j j j j

z z n z

z n z z z n n
, (23) 

and for zj, we obtain the usual Bose–Einstein distribution: 

  



 

1
(0)

1j

jn e . (24) 

Taking into account the correction of order 1/zj, we have 
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
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(0)

(0)
1 2

2

j

j j

j

n
n n

z
. (25) 

 When determining factorials through the gamma function, the 
statistical weight (20) will be written in the following form: 

 
( )

( 1) ( )

j j

j

j j

z N

N z

 
 

  
. (26) 

This implies the formula for nonequilibrium entropy 
j

j

S S  : 

      ln ( ) ln ( 1) ln ( )j j j j j j jS z n z z n z        . (27) 

 As noted, unoccupied levels (nj0) do not give a contribution to 
the total entropy. For nj0, from condition (8), we find the equa-
tion for the average number of particles in each state: 

 ( ) ( 1) ( ) ( )j j j j j j j jz n z z n n T           . (28) 

 If one uses asymptotic formulae (A3) and (A6), formula (27) will 
turn into Eq. (22), and formula (28) will turn into Eq. (23). 
 By using formula (A8), Eq. (28) can be represented as 

 

1

1

1 ( ) ( )
jz

j j j j

k

z n z k T





      . (29) 

 The form of distribution functions for a system of Bose particles 
at z2, z10 and arbitrary j is shown in Fig. 2. 
 In the standard Bose–Einstein distribution (24), the parameter  
can take arbitrary positive values (0). At , the distribu-
tion function exponentially tends to zero: n() e


, and at , it 

increases according to the law n() 1/. 
 The dependence n() obtained from Eq. (23) with 

   ln ( 1) (1 2 ) ( 1) 1j j j j j j j j j j j jz z n z n z z z z n n         

(curves 2 in Fig. 2) turns out to be multiple-valued and leads to a 
significant discrepancy with the calculation performed using the 
exact formula (28) (curves 1 in Fig. 2). Therefore, Eq. (23) is not 
applicable for calculating average occupation numbers. However, 
the approximate formula for the distribution function (25) follow-
ing from Eq. (23) gives a good approximation, almost coinciding 
with the exact dependence (curves 1 in Fig. 2). The essential differ-
ence consists in that, at some boundary value max, the exact 



QUANTUM DISTRIBUTION FUNCTIONS IN SYSTEMS WITH AN ARBITRARY NUMBER 9 

function (28) turns to zero, while the approximate function (25) 
remains finite, although exponentially small. 
 Thus, for the exact DF (28) with values nj0, the parameter j 
changes in the finite region 0jimax, where: 

 







      
1

1

max

1

( ) (1)
jz

j j

k

z k  (30) 

and  
max

( ) 0j jn . At j0, the exact DF increases according to the 
law ( ) ( 1) ( )j j j j jn z z   . Thus, at given T and , the population of 
level j  is different from zero, when there holds the inequality 

 
max

0
j

j
T

  
   . (31) 

 All the other levels remain empty; so, there are only a finite 
number of partially occupied levels, and their number increases 
with increasing temperature. 
 At zero temperature and a fixed number of Bose particles, only 
the lower level is occupied, and the chemical potential takes the 
value 1. The entropy      1 1 1

ln ( ) ln ( 1) ln ( )S N z N z         
remains nonzero in this case, so that the third law of thermodynam-
ics is satisfied only in the Nernst formulation. With a slight in-

 
a      b 

Fig. 2. Distribution function of Bose particles, n(), over states in various 
approximations with multiplicities of level degeneracy: (a) z2, (b) z10. 
1—distribution function (DF) calculated using the exact formula (28); 2—
DF calculated using approximate Eq. (23); 3—conventional Bose–Einstein 
DF (24). The calculation using the approximate formula (25) gives a de-
pendence that practically coincides with curve 1 (dotted line). 
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crease in temperature, the lower level continues to remain occupied 
with other levels being empty in a certain temperature range, and 
the chemical potential changes linearly with temperature 

1 1 1
( )T N z     . At the temperature T1 determined by the condi-

tion 

 
2 1 1 2 1 1

(0) ( )T N z       , (32) 

there begins filling of the second level, and the number of particles 
at the lower level decreases. At further increase of temperature, 
there begins filling of higher levels. At a certain temperature TB, 
the number of particles at the ground level will turn to zero. This 
temperature is determined by the equations for partially occupied 
levels: 

    2 1 3 1
2 2 1max 3 3 1max

( ) ,  ( ) ,  B B

B B

n T n T
T T

     
        , (33) 

where 
1max 1

( ) (1)z     , provided that 

2 2 3 3
( ) ( )B Bz n T z n T N   , 1 1maxB BT     . 

If one goes down in temperature, then, TB corresponds to the tem-
perature, at which the filling of the lower level begins, and there-
fore, it can be considered as an analogue of the temperature of 
Bose–Einstein condensation in macroscopic systems [1]. 

4. SUMMARY AND CONCLUSIONS 

In connection with the intensive study of quantum systems of small 
sizes, the problem of theoretical description of such objects with 
taking into account their interaction with the environment is be-
coming actual increasingly. Methods of statistical mechanics can be 
also used to describe such systems with a small number of particles, 
which are in thermodynamic equilibrium with a thermostat. 
 In this work, the equations are obtained for the distribution 
functions of fermions and bosons over quantum states for systems 
with an arbitrary, including a small, number of particles; in the 
limiting case, when the number of particles and the multiplicity of 
degeneracy of levels in the system are large, these distributions 
transform into the well-known Fermi–Dirac and Bose–Einstein dis-
tributions, respectively. For systems with a small number of parti-
cles and at low temperatures, the average number of particles at a 
given level can differ significantly from the values predicted by the 
Fermi–Dirac and Bose–Einstein distributions. It is of interest to 



QUANTUM DISTRIBUTION FUNCTIONS IN SYSTEMS WITH AN ARBITRARY NUMBER11 

test experimentally the applicability of the obtained distributions 
for structures with a small number of particles. 

APPENDIX. Some Properties of the Gamma Function and Its Log-
arithmic Derivative (The Psi Function) 

The definition of the gamma function is as follows: 
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 For the logarithm of the gamma function, there holds the inte-
gral representation: 
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and the asymptotics at x is as follows: 
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 The logarithmic derivative of the gamma function (the psi func-
tion) is defined by the formula 
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 The integral representation is valid for it as follows: 
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and the asymptotics at x is as follows: 
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 There are useful formulas: 
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where 0.5772 is Euler’s constant. 
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