PACS numbers: 31.15.es, 76.60.Pc, 77.22.Ej, 78.30.-j, 78.40.-q, 81.05.Zx, 82.35.Np

Exploring the Structure, Optical and Electronic Properties of New $PVA-PEO-Ba-Si_3N_4$ Structures for Electronics Applications

Hind Ahmed and Ahmed Hashim

College of Education for Pure Sciences, Department of Physics, University of Babylon, Hillah, Iraq

The present work aims to design the new PVA-PEO-Ba-Si₃N₄ structures to use them in various optoelectronics nanodevices. The structural, thermal, optical and electronic characteristics of PVA-PEO-Ba-Si₃N₄ structures are studied. The structure of PVA-PEO-Ba-Si₃N₄ is analysed by GaussView 5.0.8 and relaxed using the Gaussian 09 package of programs employing the density functional theory (DFT) with the B3LYP/LanL2DZ level. The studied characteristics of PVA-PEO-Ba-Si₃N₄ structures include the energy, ionization potentials, energy gap, and electron affinity. The PVA-PEO-Ba-Si₃N₄ structures are optimized successfully with the Gaussian 09 package. The results show that the PVA-PEO-Ba-Si₃N₄ structures have good optical and electronic properties. In addition, the PVA-PEO-Ba-Si₃N₄ nanostructures have wide absorption spectrum that makes the PVA-PEO-Ba-Si₃N₄ structures suitable in various electronics devices like transistors, photovoltaic cell, sensors and other devices.

Цю роботу спрямовано на розробку нових структур полівініловий спирт (ПВС)-поліоксиетилен (ПОЕ)-Ва-Si₃N₄ для використання в різних нанопристроях оптоелектроніки. Досліджено структуру, теплові, оптичні й електронні характеристики структур ПВС-ПОЕ-Ва-Si₃N₄. Структуру ПВС-ПОЕ-Ва-Si₃N₄ було проаналізовано за допомогою GaussView 5.0.8 і зрелаксовано за допомогою пакета програм Gaussian 09, що використовує теорію функціоналу густини (DFT) на рівні B3LYP/LanL2DZ. Досліджувані характеристики структур ПВС-ПОЕ-Ва-Si₃N₄ включали енергію, потенціяли йонізації, енергетичну щілину та спорідненість до електрона. Структури ПВС-ПОЕ-Ва-Si₃N₄ були успішно оптимізовані за допомогою пакета Gaussian 09. Результати показали, що структури ПВС-ПОЕ-Ва-Si₃N₄ мають хороші оптичні й електронні властивості. Крім того, наноструктури ПВС-ПОЕ-Ва-Si₃N₄ мають широкий спектер поглинання, що робить структури ПВС-ПОЕ-Ва-Si₃N₄ придатними для різних електронних пристроїв, таких як транзистори, фотоелектричні

699

елементи, давачі й інші пристрої.

Key words: polymer blend, Si_3N_4 , optical properties, Gaussian 09, electronics devices.

Ключові слова: полімерна суміш, Si₃N₄, оптичні властивості, Gaussian 09, електронні пристрої.

(Received 3 September, 2023; in revised form, 4 September, 2023)

1. INTRODUCTION

Polymers are considered as organic materials, which have conjugated chains and show high electrical conduction; this one relates to their characteristics such charges' carriers as *p*-electrons, which cause the mobility of charge alongside the polymers' chain backbone as well, inorganic materials like metal oxides and metals. Polymers' characteristics are as good as with inorganic materials although polymers have some pros and cons, like flexibility, low cost, processability, lightweight, and resistance to corrosion. The inorganic materials as well have important characteristics like good mechanical strength and high thermal stability. Thus, polymer/inorganic systems have different applications in various fields [1]. The improvement of practical organic materials is a quickly increasing of science area, which possibly may replace the conventionally employed materials with low cost and improved performing novel ones in the future and carry out several novel applications [2, 3]. The Si_3N_4 material has large chemical stability, resistance to heat and mechanical characteristics [4]. Gaussian 03 program (computer software is to make the calculation, which is capable of predicting various characteristics of reactions and molecules, including the structures and molecular energy [5]. There are numerous studies on composites and nanocomposites to utilize in a variety of fields like antibacterial defence [6-12], electronics and optoelectronics [13, 30], energy storage [31–33], radiation shielding and bioenvironmental technology [34-39], optical fields [40-51] and sensors [52, 53]. The present work aims to design of novel PVA-PEO-Ba-Si₃N₄ structures for flexible optoelectronics devices. The PVA/PEO blend doped with barium and Si_3N_4 have promising materials in the flexible and low-cost applications for different modern industrial fields.

2. THEORETICAL PART

Energy gap (E_g) is the difference between the energies of (HOMO) and (LUMO) [5]:

$$E_{gap} = E_{LUMO} - E_{HOMO} \,. \tag{1}$$

The ionization energy is expressed (in [eV]) by [54] as follows:

$$I_E = -E_{HOMO} \,. \tag{2}$$

Electron affinity can be defined by [5] as follows:

$$E_A = -E_{LUMO} \,. \tag{3}$$

The chemical potential (μ) is determined by [55] as follows:

$$\mu \approx \frac{1}{2} \left(E_{HOMO} + E_{LUMO} \right) \approx -\frac{1}{2} \left(I_E + E_A \right). \tag{4}$$

Chemical hardness (H) is given by [56] as follows:

$$H = \frac{I_E - E_A}{2}, \qquad (5)$$

Chemical softness (S) is the inverse of hardness by [57] as below:

$$S = \frac{1}{2H},\tag{6}$$

Electrophilicity (ω) can be defined by [58] as follows:

$$\omega = \frac{\mu^2}{2H} \,. \tag{7}$$

The electronegativity (E_N) is given by [59] as follows:

$$E_N = \frac{1}{2} \left(I_E + E_A \right). \tag{8}$$

The electric dipole polarizability represents a second order variation in energy [60]. The polarizability is given by [61] as follows:

$$\langle \alpha \rangle = \frac{1}{3} (\alpha_{xx} + \alpha_{yy} + \alpha_{zz}).$$
 (9)

4. RESULTS AND DISCUSSION

The structure of PVA-PEO-Ba-Si₃N₄ was designed by GaussView 5.0.8 and relaxed using the Gaussian 09 package of programs by employing the DFT with the B3LYP/LanL2DZ level. Figure 1 shows the optimized relaxed PVA-PEO-Ba-Si₃N₄ structure. Table 1 represents the standard orientation of all atoms in the molecule. The

Fig. 1. Optimization of PVA–PEO–Ba–Si $_3N_4$ structure.

Measurements	The optimization parameters	Values
Bonds, Å	C–C	1.532
	C–O	1.481
	C-H	1.099
	О–Н	0.993
	Si=N	1.755
	N-N	1.411
	Ba–Si	3.271
Angles, deg.	C-C-C	113.201
	С–О–Н	106.959
	N-Si-N	121.899
	Ba-N-Si	152.830

TABLE 1. Average lengths of bond in [Å] and the angles in [degrees].

bonds' values in present work are agreed with Refs. [4, 62, 63].

Figure 2 shows the IR spectrum of $PVA-PEO-Ba-Si_3N_4$ structure calculated using DFT. As found, the strong peak observed at 3300 cm⁻¹ is attributed to the O-H groups.

In the Raman spectra, a variation is observed in the molecules' polarization; that is, the ultraviolet or visible photons interact with the vibrating bonds of molecules losing or gaining parts of their energy, thereby, creating the spectra [64]. Figure 3 represents the Raman spectra of $PVA-PEO-Ba-Si_3N_4$ structure. Intensities of Raman spectra depend on the probability that photon with particular wavelength will be absorbed. As seen in figure, the active IR

Fig. 2. IR spectra of PVA-PEO-Ba-Si₃N₄ structure.

Fig. 3. Raman intensities of PVA-PEO-Ba-Si $_3N_4$ structure with vibration frequency.

region is similar with less activity in Raman intensities. The peak intensities in Raman spectrum depend on the probability that a particular wavelength photon will be absorbed. These probabilities can be computed from the wave function by computing the transition dipole moments. This gives relative peak intensities, since the calculation does not include the density of the substance.

The time dependence of electron absorption spectra of PVA– PEO-Ba-Si₃N₄ was performed using TD-SCF at B3LYP/DFT level of calculations.

Figure 4 show the visible and ultraviolet spectra. The UV-Viscalculations of PVA-PEO-Ba-Si₃N₄ composites carried out by means of the B3LYP-TD/6-31G method included the excitation energy, wavelength, oscillator strength and electronic transition. The spectrum lies within the UV-Vis limits, because the spectrum in theoretical study taking into account concentrations will be calculated at the highest concentration, where the sample will be completely opaque only seen in the visible area of the spectrum, and, at the lower concentration, it will be seen in the ultraviolet area of the spectrum.

The NMR data of PVA-PEO-Ba-Si₃N₄ composites are given in

Fig. 4. UV-Vis spectrum for PVA–PEO–Ba–Si $_3N_4$ structures.

Fig. 5. Nuclear magnetic resonance of PVA-PEO-Ba-Si₃N₄ structures.

Fig. 5. ¹H-NMR reveals several types of protons in high shielding. The high shielding of H may be resonated to the H-bond formation with N and O atoms in ammine and hydroxyl ligands.

Table 2 gives the values of E_{HOMO} , E_{LUMO} and E_g in [eV] for PVA– PEO–Ba–Si₃N₄ structure. The E_{LUMO} is larger than the E_{HOMO} with big separation between the two molecular orbitals ($E_g = 5.75 \text{ eV}$). This behaviour is in a good agreement with Refs. [4, 65] and refers that PVA–PEO–Ba–Si₃N₄ structure requests high energy to accepting or donating an electron. Concerning DOS spectra, the charge density is small in occupied orbital and elevated in virtual orbital for pure, O- and H-substituted Si₃N₄ structures. This mentions the localization of charges along the virtual orbitals rather than in occupied orbitals.

Figure 6 shows the LUMO and HOMO distributions for PVA– PEO–Ba–Si $_3N_4$ structures.

Figure 7 represents the electrostatic potential (ESP) distribution

PVA-PEO-Ba-Si $_3N_4$ structures E_{HOMO} , eV E_{LUMO} , eV E_g , eV-9.01-3.265.75

Fig. 6. The distribution of HOMO(up) and LUMO(down) for PVA–PEO–Ba– Si_3N_4 structures.

TABLE 2. Energy gap values in [eV] for structures.

for PVA-PEO-Ba-Si₃N₄ structures from the total self-consistent field (SCF) approximation. ESP distributions for PVA-PEO-Ba-Si₃N₄ structures are created by repulsive forces or attracting regions around each structure. In commonly, the ESP surfaces for PVA-PEO-Ba-Si₃N₄ structures are dragged toward the positions of negative charges in each molecule based on the high electronegativity oxygen atoms (3.5 eV).

Fig. 7. Electrostatic-potential distribution surface for PVA-PEO-Ba-Si₃N₄.

Property	$PVA-PEO-Ba-Si_3N_4$ composites	
Total energy	-1428.997 (a.u.)	
Ionization potential	9.01	
Electron affinity	3.26	
Electronegativity	6.135	
Chemical hardness	2.875	
Chemical softness	0.173	
Chemical potential	-6.135	
Electrophilicity	6.545	
Dipole moment [Debye]	27.149	

TABLE 3. Electronic-characteristics values in [eV] for the structures.

TABLE 4. The calculated average $\langle\alpha\rangle$ and its components for PVA–PEO– Ba–Si $_3N_4$ composites.

Polarizability, a.u.					
α_{xx} , a.u.	α_{yy} , a.u.	α_{zz} , a.u.	$\langle \alpha \rangle$, a.u.		
409.985	402.077	234.338	348.8		

Table 3 represents the ground state energy (E_T) results in [a.u.]. These characteristics include I_E , E_A , E_N , H and ω [66].

Table 4 shows the average polarizability $\langle \alpha \rangle$ and its components in [a.u.] for PVA-PEO-Ba-Si₃N₄ structures.

The density of states (DOS) for PVA-PEO-Ba-Si₃N₄ structures as a function of energy levels was calculated by the DFT-B3LYP/LanL2DZ level of theory. Figure 8 shows the degenerated states as a function of energy levels for the structure; this degeneracy is caused by the existence of the new types of atoms that leads to varying the bond lengths and angles or changing the geometry of the structure.

Table 5 represents the E_{th} , C_v and S_{th} values of thermal characteristics for PVA-PEO-Ba-Si₃N₄ structures. These characteristics include all the electronic, translational, rotational, vibrational and total thermal degrees of freedom.

Fig. 8. DOS for PVA-PEO-Ba-Si₃N₄ structure.

TABLE 5. E_{th} , C_v and S_{th} of PVA-PEO-Ba-Si₃N₄ structure.

Thermal corrections, Hartree/partical scheme					
E_{th} , kcal/mol		C_v , cal/(mol·K)	S_{th} , cal/(mol·K)		
Electronic	0.000	0.000	1.377		
Translational	0.889	2.981	45.147		
Rotational	0.889	2.981	38.177		
Vibrational	351.958	135.902	176.463		
Total	353.736	141.864	261.165		

5. CONCLUSIONS

This work included exploring the structure, thermal, optical and electronic characteristics for electronics and optics devices. By using the DFT method, a good relaxation of the PVA-PEO-Ba-Si₃N₄ structures was determined. The ionization potential is greater than the electron affinity; so, the studied structure needs high energy to become cation. According to the high of the electrophilicity, the PVA-PEO-Ba-Si₃N₄ structures are more reactive. The results showed that the PVA-PEO-Ba-Si₃N₄ structures have good optical and electronic properties. In addition, the designed nanostructures have wide absorption spectrum that makes the PVA-PEO-Ba-Si₃N₄ structures as suitable in various electronics devices like transistors, photovoltaic cell, sensors and other devices.

REFERENCES

- 1. H. Ahmed and A. Hashim, *Silicon*, **14**: 4907 (2022); https://doi.org/10.1007/s12633-021-01258-2
- J. H. Burroughes, D. D. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Buns, and A. B. Holmes, *Nature*, 347: 539 (1990); https://doi.org/10.1038/347539a0
- G. Gustafsson, Y. Cao, G. M. Treacy, F. Klavetter, N. Colaneri, and A. J. Heeger, *Nature*, 357: 477 (1992); https://doi.org/10.1038/357477a0
- J. Zhang, Z. Huang, Z. Yin, M. Li, F. Chen, and Q. Shen, J. of Wuhan University of Technology-Mater. Sci. Ed., 35: 863 (2020); https://doi.org/10.1007/s11595-020-2331-4
- M. J. Frisch, F. R. Clemente, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, and G. Zhe, *Gaussian 09, Revision A. 01*.
- A. Hashim, I. R. Agool, and K. J. Kadhim, *Journal of Bionanoscience*, 12, No. 5: 608 (2018); doi:10.1166/jbns.2018.1580
- A. Hazim, A. Hashim, and H. M. Abduljalil, International Journal of Emerging Trends in Engineering Research, 7, No. 8: 68 (2019); https://doi.org/10.30534/ijeter/2019/01782019
- A. Hazim, H. M. Abduljalil, and A. Hashim, International Journal of Emerging Trends in Engineering Research, 7, No. 8: 104 (2019); https://doi.org/10.30534/ijeter/2019/04782019
- O. B. Fadil and A. Hashim, Nanosistemi, Nanomateriali, Nanotehnologii, 20, Iss. 4: 1029 (2022); https://doi.org/10.15407/nnn.20.04.1029
- W. O. Obaid and A. Hashim, Nanosistemi, Nanomateriali, Nanotehnologii, 20, Iss. 4: 1009 (2022); https://doi.org/10.15407/nnn.20.04.1009
- M. H. Meteab, A. Hashim, and B. H. Rabee, Nanosistemi, Nanomateriali, Nanotehnologii, 21, Iss. 1: 199 (2023); https://doi.org/10.15407/nnn.21.01.199

- M. H. Meteab, A. Hashim, and B. H. Rabee, Nanosistemi, Nanomateriali, Nanotehnologii, 21, Iss. 2: 451 (2023); https://doi.org/10.15407/nnn.21.02.451
- A. Hazim, A. Hashim, and H. M. Abduljalil, Nanosistemi, Nanomateriali, Nanotehnologii, 18, Iss. 4: 983 (2020); https://doi.org/10.15407/nnn.18.04.983
- 14. A. Hashim and Z. S. Hamad, Nanosistemi, Nanomateriali, Nanotehnologii, 18, Iss. 4: 969 (2020); https://doi.org/10.15407/nnn.18.04.969
- A. Hazim, A. Hashim, and H. M. Abduljalil, *Egypt. J. Chem.*, 64, No. 1: 359 (2021); doi:10.21608/EJCHEM.2019.18513.2144
- H. Ahmed and A. Hashim, Journal of Molecular Modeling, 26: 1 (2020); doi:10.1007/s00894-020-04479-1
- 17. H. Ahmed and A. Hashim, *Silicon*, 14: 4907 (2022); https://doi.org/10.1007/s12633-021-01258-2
- 18. A. Hashim, Opt. Quant. Electron., 53: 1 (2021); https://doi.org/10.1007/s11082-021-03100-w
- H. Ahmed and A. Hashim, Trans. Electr. Electron. Mater., 23: 237 (2022); https://doi.org/10.1007/s42341-021-00340-1
- 20. H. Ahmed and A. Hashim, *Silicon*, 14: 7025 (2021); https://doi.org/10.1007/s12633-021-01465-x
- A. Hazim, A. Hashim, and H. M. Abduljalil, *Trans. Electr. Electron. Mater.*, 21: 48 (2019); https://doi.org/10.1007/s42341-019-00148-0
- 22. A. F. Kadhim and A. Hashim, Opt. Quant. Electron., 55: 432 (2023); https://doi.org/10.1007/s11082-023-04699-8
- 23. H. Ahmed and A. Hashim, Opt. Quant. Electron., 55: 280 (2023); https://doi.org/10.1007/s11082-022-04528-4
- 24. G. Ahmed and A. Hashim, Silicon, 15: 3977 (2023); https://doi.org/10.1007/s12633-023-02322-9
- M. H. Meteab, A. Hashim, and B. H. Rabee, Opt. Quant. Electron., 55: 187 (2023); https://doi.org/10.1007/s11082-022-04447-4
- 26. B. Mohammed, H. Ahmed, and A. Hashim, Nanosistemi, Nanomateriali, Nanotehnologii, 21, Iss. 1: 113 (2023); https://doi.org/10.15407/nnn.21.01.113
- 27. A. Hashim, Nanosistemi, Nanomateriali, Nanotehnologii, 19, Iss. 3: 647 (2021); https://doi.org/10.15407/nnn.19.03.647
- A. F. Kadhim and A. Hashim, Silicon, 15: 4613 (2023); https://doi.org/10.1007/s12633-023-02381-y
- H. A. Jawad and A. Hashim, Nanosistemi, Nanomateriali, Nanotehnologii, 21, Iss. 1: 133 (2023); https://doi.org/10.15407/nnn.21.01.133
- 30. M. H. Meteab, A. Hashim, and B. H. Rabee, *Silicon*, **15**: 1609 (2023); https://doi.org/10.1007/s12633-022-02114-7
- 31. A. S. Shareef, F. Lafta Rashid, A. Hadi, and A. Hashim, *International Journal of Scientific & Technology Research*, 8, Iss. 11: 1041 (2019).
- A. Hadi, A. Hashim, and D. Hassan, Bulletin of Electrical Engineering and Informatics, 9, No. 1: 83 (2020); doi:10.11591/eei.v9i1.1323
- H. Ahmed and A. Hashim, Nanosistemi, Nanomateriali, Nanotehnologii, 20, Iss. 4: 951 (2022); https://doi.org/10.15407/nnn.20.04.951
- A. Hashim and N. Hamid, Journal of Bionanoscience, 12, No. 6: 788 (2018); doi:10.1166/jbns.2018.1591

- 35. A. Hashim and Z. S. Hamad, *Journal of Bionanoscience*, **12**, No. 4: 488 (2018); doi:10.1166/jbns.2018.1551
- A. Hashim and Z. S. Hamad, Journal of Bionanoscience, 12, No. 4: 504 (2018); doi:10.1166/jbns.2018.1561
- B. Abbas and A. Hashim, International Journal of Emerging Trends in Engineering Research, 7, No. 8: 131 (2019); https://doi.org/10.30534/ijeter/2019/06782019
- K. H. H. Al-Attiyah, A. Hashim, and S. F. Obaid, *Journal of Bionanosci*ence, 12: 200 (2018); doi:10.1166/jbns.2018.1526
- 39. H. A. J. Hussien, A. Hadi, and A. Hashim, Nanosistemi, Nanomateriali, Nanotehnologii, 20, Iss. 4: 1001 (2022); https://doi.org/10.15407/nnn.20.04.1001
- 40. H. Ahmed and A.Hashim, *Silicon*, **14**: 6637 (2022); https://doi.org/10.1007/s12633-021-01449-x
- 41. H. Ahmed and A. Hashim, Silicon, 13: 4331 (2020); https://doi.org/10.1007/s12633-020-00723-8
- 42. O. B. Fadil and A. Hashim, *Silicon*, **14**: 9845 (2022); https://doi.org/10.1007/s12633-022-01728-1
- 43. H. Ahmed and A. Hashim, Silicon, 15: 2339 (2023); https://doi.org/10.1007/s12633-022-02173-w
- 44. H. B. Hassan, H. M. Abduljalil, and A. Hashim, Nanosistemi, Nanomateriali, Nanotehnologii, 20, Iss. 4: 941 (2022); https://doi.org/10.15407/nnn.20.04.941
- 45. H. A. Jawad and A. Hashim, Nanosistemi, Nanomateriali, Nanotehnologii, 20, Iss. 4: 963 (2022); https://doi.org/10.15407/nnn.20.04.963
- 46. A. S. Shareef, F. Lafta Rashid, A. Hadi, and A. Hashim, *International Journal of Scientific & Technology Research*, 8, Iss. 11: 1041 (2019).
- 47. A. Hadi, A. Hashim, and D. Hassan, Bulletin of Electrical Engineering and Informatics, 9, No. 1: 83 (2020); doi:10.11591/eei.v9i1.1323
- 48. H. Ahmed and A. Hashim, Transactions on Electrical and Electronic Materials, 22: 335 (2021); https://doi.org/10.1007/s42341-020-00244-6
- N. A.-H. Al-Aaraji, A. Hashim, A. Hadi, and H. M. Abduljalil, Silicon, 14: 10037 (2022); https://doi.org/10.1007/s12633-022-01730-7
- 50. H. Ahmed and A. Hashim, Opt. Quant. Electron., 55: 1 (2023); https://doi.org/10.1007/s11082-022-04273-8
- 51. W. O. Obaid and A. Hashim, *Silicon*, **14**: 11199 (2022); https://doi.org/10.1007/s12633-022-01854-w
- 52. H. Ahmed and A. Hashim, International Journal of Scientific & Technology Research, 8, Iss. 11: 1014 (2019).
- B. Mohammed, H. Ahmed, and A. Hashim, Nanosistemi, Nanomateriali, Nanotehnologii, 20, Iss. 1: 187 (2022); https://doi.org/10.15407/nnn.20.01.187
- 54. H. M. Kampen, H. Méndez, and D. R. T. Zahn, University of Chemnitz, Institut fur Physik, Germany, 28: 1 (1999); https://www.tuchemnitz.de/physik/HLPH/publications/p_src/438.pdf
- 55. K. Sadasivam and R. Kumaresan, Computational and Theoretical Chemistry, 963: 1 (2011); https://doi.org/10.1016/j.comptc.2010.10.025
- 56. O. A. Kolawole and S. Banjo, Anal. Bioanal. Electrochem., 10: 136 (2018).
- 57. P. W. Atkins and R. S. Friedman, Molecular Quantum Mechanics (Oxford

710

University Press: 2011); http://sutlib2.sut.ac.th/sut_contents/H96900.pdf

- 58. V. Subramanian, *Cen. Leather Res. Inst. Chem. Laboratory*, 1 (2005); https://scholar.google.com/scholar?hl=ar&as_sdt=0% 2C5&q=Subramanian % 2C+V.+% 282005% 29.+Quantum+Chemical+Descriptors+in+Computation al+Medicinal+Chemistry+for+Chemoinformatics.+Central+Leather+Researc h+Institute% 2C+Chemical+Laboratory% 2C+0-0000&btnG=
- 59. L. Shenghua, Y. He, and J. Yuansheng, Int. J. of Mole. Sci., 5: 13 (2004).
- 60. A. J. Camargo, K. M. Honyrio, R. Mercadante, F. A. Molfetta, C. N. Alves, and A. B. da Silva, *Journal of the Brazilian Chemical Society*, 14: 809 (2003); https://doi.org/10.1590/S0103-50532003000500017
- 61. P. Udhayakala and T. V. Rajendiran, Journal of Chemical, Biological and Physical Sciences, 2: 172 (2011).
- 62. F. L. Riley, Journal of the American Ceramic Society, 83: 245 (2000); https://doi.org/10.1111/j.1151-2916.2000.tb01182.x
- 63. V. M. Bermudez, *Surface Sci.*, 691: 1 (2020); https://doi.org/10.1016/j.susc.2019.121511
- 64. Peter J. Larkin, Infrared and Raman Spectroscopy: Principles and Spectral Interpretation (USA: Elsevier Inc.: 2013).
- H. Zhu, L. Shi, S. Li, S. Zhang, T. Tang, and W. Xia, physica status solidi (b), 255: 1 (2018); https://doi.org/10.1002/pssb.201700676
- 66. V. Nagarajan, S. Venkatesan, and R. Chandiramouli, Int. J. of Chem. Tech. Res., 6: 5466 (2014).