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Graphene is the emerging area of nanomaterials due to their prospect for
coming generation electronic devices. Various studies of graphene have
been carried out to investigate the phonon properties, elastic properties.
However, the physicothermal properties such as heat capacity and Griinei-
sen parameter have been neglected. The Griineisen parameter is the main
physical parameter in thermal expansion mechanisms. These parameters are
generally positive for some modes, but they are found to be negative for g
values in high-symmetry directions. They are found negative for acoustic
mode in case of graphene. The Debye model for the specific heat at low
temperatures is also taken into account for acoustic branches. The heat ca-
pacity of the graphene is also computed. Physicothermal properties investi-
gated by PYTHON program is agreed very close with the result of other
researchers.

I'paden € HOBOIO rasry3sio HAaHOMATEPiAJJiB ueped IXHIO IMEePCHEKTUBHICTH AJIs
€eJIEKTPOHHUX NPUCTPOIB Mai0yTHHLOTO MOKOJIiHHA. Bynu mpoBeneHi pisHi mo-
caimkeHHa rpadeHy OJid BUBUEeHHA (DOHOHHUX BJIACTUBOCTEH, NPYKHiX BJac-
tuBocreii. OgHaK TaKUMU (QiBUKO-TEPMIUHUMU BJIACTUBOCTAMU, AK TEIJIOMiC-
TKicTb i rpmHaﬁseHiB mapaMmeTep, HeXTYBaJIU. rpIOHaﬁ3eHiB mapaMeTep € oc-
HOBHUM (DiBMYHUM HTapaMeTpPOM B MeXaHi3MaxX TemJoBOTro po3mupeHHs. Ili
mapamMeTpu, K IIPaBUJIO, TO3UTUBHI A HeAKUX MO, ajle BOHU BUSBJISIIOTH-
cA HeTaTUBHUMU [IJIs 3HAUEHDb ( Y HaAIPAMKAaxX BUCOKOI cuMmerpii. Bouu BusaB-
JAIOTHCA HETaTUBHUMU [JIA aKyCTUYHOI MoAu y BuUmagky rpadeny. Ilebais
MOJeJNIb AJs MUTOMOI TeIJIOMICTKOCTHM 3a HUBBKUX TEMIIePaTyp BPaXxOBYETHCSA
i gns akycTmuHmX TiMTOK. TaKoyK OOUMCIIOETHLCA TEILIOMICTKiCTh Tpadeny.
disuKo-TepMiuHi BaacTMBOCTi, mociaimkeni sa mporpamoro PYTHON, nmy:xe
OJIN3BKi M0 pe3yabTaTiB iHIMNX AOCTiIIHUKIB.

Key words: Hamiltonian mechanics, harmonic oscillators, heat capacity,
thermal properties of graphene.
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1. INTRODUCTION

For decades, scientists and researchers believed that two-dimensional
(2D) crystals are thermodynamically unstable. Graphene was the
first two-dimensional material that has successfully been exfoliated
from bulk graphite in 2004. The graphene structure has interesting
features, which is the good reason for studying its thermal proper-
ties. Graphene is a monolayer of hexagonally arranged carbon atoms,
which has become practically available today [1-3].

The atoms in the 2D monolayer graphene are capable of executing
oscillations about their equilibrium position (n,!). In oscillating
states, the instantaneous position of atoms (n,l) is denoted by
r(n,l) = x(n,1) + u(n,l) . Thus, the Hamiltonian of the graphene is

M. . 1 nm ,
H = ani #uf(n,l) + Eznli zmzy cDij [l’lrjui(n’l)uj (m’l ) ’ (1)

where

o, (nm] _ { U } . @)
L ou,(n,)ou,;(m,l') .

nm
The force constants are defined as @, [l l'] = —yee; , where e, and

e; are the unit-vector components; it is the force acting on the nt
atom in the I cell along i" direction due to a unit displacement of
the m™ atom in the I'" cell along j™ direction.

The equation of vibrating motion is given by

M ii,(n,l) = —me ( Juj (m,l'). (3)

The solution of above equation is modified by the periodicity of
lattice with a wave-like solution of type

u,(n,1) = M,"?u,, exp[i{q - r(n,l) — o(q)t}], 4)

nm
LU

where u,, is the amplitude of vibration along i** direction of the n'
atom, o is the angular frequency, q is wave vector, and the factor
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M;"? has been chosen for convenience in further calculations [4].
The equation of motion in matrix notation is

o?(0)MU(q) = D(@)U(q) . (%)
The condition for non-trivial solution
|D(@) - o’ (@MI|=0. (6)

The elements of dynamical matrix are defined as
nm
D, =3, @, (l,lfjeXp (iq - r(nm, i), (7)

The above equation in matrix form is solved by MATLAB pro-
gram. And the result is investigated along hexagonal Brillouin zone

27 ,oj [13-15].

a3

with symmetry points I'(0,0), M (

2. STUDY OF GRUNEISEN PARAMETERS OF GRAPHENE

On the basis of oscillator model, Griineisen predicted that the three
important physical properties of a solid, the thermal expansion coef-
ficient, the lattice specific heat, and the compressibility are linked
together. To understand the physical importance of the relation, we
examine that the frequency of a lattice vibration of specified wave
vector changes with the lattice parameter of the solid; this leads to
anharmonic effect. For simplicity, we assume that a given change in
lattice parameter gives rise to the same relative change of frequency
of every mode of vibration. The results of Kamlesh et al. were ob-
tained by calculating individual values of the angular frequencies
0, 4,; for different modes in high-symmetry direction [12, 14, 15].
The Griineisen parameter for 2D nanostructure materials of IV™
group of semiconductor is derived by Xu-Jin Ge et al. [21]:

. a, aa)a .
Y(q,j) = ——>— {6—‘”} . (8)
Oyq.j a |,

It is now clear that, if o,,; is angular frequency of the solid, cor-
responding to wave vector q, mode j, a, is the equilibrium lattice
constant. Y(q,j) is independent of compressibility and, thus, it has
the same value for every modes at low temperature. Thus, at low
frequency modes, the variation is negligible for Griineisen parameter.

However, when Griineisen parameter Y(q,j) is associated with acous-
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TABLE 1. Calculated Griineisen parameters of graphene for acoustic
modes.

Wave vector, q Griineisen parameter for acoustic mode
0.00 -0.0
0.05 -4.4801
0.10 -8.5944
0.15 -12.1295
0.20 -15.0468
0.25 -17.4116
0.30 -19.3231
0.35 -20.8768
0.40 -22.1518
0.45 -23.2099
0.50 -24.0980
0.55 —-24.8514
0.60 -25.4972
0.65 -26.0559
0.70 -26.5433
0.75 -26.9719
0.80 -27.3515

tic modes, it is heavily weighted and tends to a decrease in Y(q,j).
Griineisen parameter Y(q,j) is the same for modes in the dispersive
region of any given branch of acoustic modes and, here, the optic
modes can be ignored. The Y(q,j) calculated in Table 1 comes from
the PYTHON program.

In high-symmetry direction M-I, Griineisen parameter of gra-
phene is determined by acoustic modes:

Y(qs J) = —a, ? qy |:00t (? qy% J:| . (9)

The Grineisen parameter plays greater role in finding the de-
pendence of various thermal properties of nanomaterials on differ-
ent temperature from phonon frequency to thermal conductivity of
a nanomaterial [6, 7]. We have shown that the graphene LA and TA
modes have negative Griineisen parameters (Fig. 1). This negative
value is because of the anomalous hardening of phonon modes upon
expansion and 2D buckled mode. However, the acoustic modes have
Griineisen parameters, which are varying from 0 to —27.35 for gra-
phene corresponding to different wave vector q. Such high values of
Grineisen parameters lead to high value of thermal conductivity.
These acoustic modes generate highly negative Griineisen parame-
ters. The other modes such as LA, LO, TA, TO and the remaining
transverse modes (ZO) has not dominant effect [12].
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Gruinsen parameter of the graphen
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Fig. 1. Variation of Griineisen parameter with wave vector q in high-
symmetry direction I'-M.

3. DEBYE TEMPERATURE VARIATION OF GRAPHENE

The Debye theory agrees with both the classical and the Einstein
quantum theories. The quantum considerations are of almost no
significance at higher temperature range [5]. The theory gives a
quite satisfactory account of the observed variation of the heat ca-
pacity in the low-temperature region. The Debye theory of specific
heat also treats the atoms of the monolayer graphene as harmonic
oscillators, however, incapable of vibrating independently of one
another. It rather treats them to be strongly coupled together oscil-
lating relative to their neighbours in the lattice. Therefore, we
should consider the vibrational motion of the monolayer graphene
as a whole rather than the vibrational motion of a single atom [16,
17].

The Debye formula for heat capacity of graphene as 2D material
is derived as

TY cor  xe

C= 4R(—] [ ————dx; (10)
0) 7% (e"-1

here, x = ho/(k.T).

The value of R=N.k. depends on the units involved, but it is
usually stated with S.I. units as R=8.314 J/(mol-K). The parameter
0 entering into our present discussion is usually referred to as the
Debye temperature. It plays the role of a characteristic temperature
of a solid. With the Debye temperature at sufficiently low tempera-
tures T, here, only acoustic modes are excited. In this case, x>>1
and the upper limit of the integration can be extended to infinity.
The integral is then deduced in terms of Riemann—Zeta function (.
The heat capacity of graphene is simulated with the PYTHON pro-
gram.
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The variation of the experimentally measured heat capacity is
compared with that computed data (Table 2). This comparison is
performed by plotting the heat capacity against the temperature.
For determination of the exact variation of Debye temperatures, we
have used PYTHON program. In this technique, the specific heat is
expressed in terms of Riemann—Zeta function £ (3). { (3) has a spe-
cial value of the Riemann—Zeta function, which is equal to
1.202056903 [9]. From the calculated heat capacities at different
temperatures, heat capacity of pure graphene is determined in
terms of Riemann—Zeta function. We make a plot of this function
by using the PYTHON program. It is seen from this plot that the
heat capacity approaches the zero value as T — 0 K. For higher
temperature, heat capacity is not varying abruptly and almost con-
stant 2Nkjg. It is easily observed from the graph as shown in Fig. 2
that heat capacity for pure graphene reaches a 0.97 J/(g'K) near
room temperature. The specific heat at constant volume behaviour
of the graphene does not show any anomaly. Figure 2 illustrates the

TABLE 2. Variation of heat capacity with temperature of graphene.

Heat capacity with Heat capacity,
Temperature, K Riemann—Zeta function, ¢ (3) J/(g'K)
0 0 0

40 0.0165000625919003-zeta(3) 0.0198
80 0.0660002503676014-zeta(3) 0.0793
120 0.148500563327103-zeta(3) 0.1785
160 0.264001001470406-zeta(3) 0.4958
200 0.412501564797509-zeta(3) 0.7140
240 0.594002253308412-zeta(3) 0.9718
280 0.808503067003117-zeta(3) 1.2693
320 1.05600400588162-zeta(3)

Heat capacity of graphene

—e— Debye temperature variation

Heat capacity, C
f=1
)

0 50 100 150 200 250 300
Temperature, T

Fig. 2. Debye temperature variation at low temperatures.
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higher order of agreement with other researchers [8—-10].

4. CONCLUSIONS

Based on the discussion above, it is important to note that the physi-
cothermal properties, such as Griineisen parameter, are strongly de-
pendent on wave vector and Debye temperature, as well as on phonon
polarizations [10, 11]. We evaluate it along high-symmetry directions
for acoustic modes because this mode play main role in thermal ex-
pansion. We find that the Griineisen parameter of graphene 2D ma-
terials is negative for low-frequency phonons near I'. This is happen-
ing because the lower acoustic modes are excited at low tempera-
tures. The computed Griineisen parameters of the LA and T'A branch-
es are highest for graphene with similar results. The study of mono-
layer graphene under quasi-harmonic approximation gives the nega-
tive values of Griineisen parameters, which will be further used in
determination of thermal expansion coefficients and thermal conduc-
tivity of nanomaterials. Figure 2 illustrates that the order of the
agreement between the Debye curve and the experimental curve for
graphene is remarkable [17]. This is, of course, what we should ex-
pect of the Debye approximation at sufficiently low temperatures.
Long-wavelength acoustic modes are just the modes, which may be
treated as in elastic continuum concept of Debye theory. Notwith-
standing the great success of the Debye theory, precise measurements
in the low-temperature region show certain deviations from the theo-
retical predictions. Debye model for the heat capacity of graphene
has been remarkably successful in describing the simulations in the
low-temperature range. This conclusion is supported by the work of
Pop et al. [18].
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PROGRAM ORGANIZATION

Appendix A. PYTHON Program of the Griineisen Parameter of
Graphene

import matplotlib.pyplot as plt
import numpy as np

import math

# #vj=gamma
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a=2.47
vj=8.98
points=np.arange(-np.pi, np.pi, 0.1)
def solve(fun):
op =[]
for i in points:
op.append(fun(i))

return op
def v(gx):

return (((-
a)*math.sqrt(3))/2)*(math.sqrt(11*vj))*(np.arctan(math.sqrt(3)*qx*a))
v = solve(v)
plt.plot(points,v)
plt.ylabel(“Griineisen parameter V)
plt.xlabel(“Wave vector (q)”)
plt.plot(points, v, color= ‘k’, linewidth=1, marker=‘0’)
plt.suptitle(‘Griineisen Parameter of the Graphene’, x=0.50, y=0.98)
plt.legend([‘ZO’])
plt.show()

Appendix B. Python Program of the Heat Capacity of Graphene

import math

import numpy as np

import matplotlib.pyplot as plt

from  future  import division

from sympy import *

x, T=symbols(‘x T7)
integrate(((x*x*x)*exp(x))/((exp(x)-1)*(exp(x)-1)), (x, 0, 00))

C-1
T-0,40,80,120,160,200,240,280,320]

foriin T:
calC=(2*zeta(3)*8.31%4%i*i)/(25639*%2539)
C.append(calC)
plt.ylabel(“Heat Capacity(C)”)
plt.xlabel(“Temperature (7))
plt.plot(T, C, color=‘k’, linewidth=1, marker = ‘0’)
plt.suptitleCHEAT CAPACITY OF GRAPHENE’, x=0.50, y=0.98)
plt.legend(] ‘Debye temperature variation’])
plt.plot(T, C)
plt.show()
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