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The purpose of this paper is to develop a model, which allows determining
the heat capacity of thin films at the temperatures comparable to and ex-
ceeding the Debye temperature. The model presented in the paper takes
into consideration the anisotropy of vibrations of the corresponding bend-
ing waves and wave vibrations in the plane occurring with the decrease in
the film thickness. Furthermore, the model is based on the quadratic dis-
persion law for bending wave vibrations in the normal direction of a thin
film and the linear dispersion law for the wave vibrations in the film
plane. In order to expand the existing model representations for the heat
capacity of thin films at low temperatures, we used the Debye’s method in
the integral expression for the free energy. We considered this approach
earlier in the model representations of the heat capacity of anisotropic
quasi-crystals. Our findings show that the thin-film heat-capacity depend-
ence on the temperature has a maximum and exceeds the heat capacity of
a bulk sample. This circumstance confirms the experimental data obtained
earlier by other authors. Besides, according to the experimental data col-
lected from the literature, heat capacity of the thin films rises, compared
to values of the bulk sample, when the film thickness decreases. This fac-
tor is also reflected in the model under consideration, and the calculated
dependence of the increase in thin films on the number of atomic layers
correlates well with the experimental data. Therefore, the proposed model
allows determining the heat capacity of thin films at the temperatures
exceeding the Debye temperature with sufficient accuracy without exper-
imental investigation.

Mertoto naroi poboTH € PO3POOKA MOZENIO, IO YMOMKJIMBIIOE BUSHAUUTHU Te-
IJIOMICTKICTh TOHKUX IIJIiBOK 3a TeMIepaTyp, AKi JOpiBHIOIOTH i IepeBU-
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uryiorh [ebaitoBi Temmeparypu. IlpeacraBienuit B poboTi MOJesab BPaxoBYe
aHi30TPOIil0 KOJMWBAHb BIiATIOBiMHWX XBUWJIL BUTHMHY Ta KOJUBAHbL XBUJb Y
IJIOIIIUHI, IO BUHUKAE i3 3MEHINIeHHAM TOBIMUHU ILIiBKU. TaKoXX B OCHOBY
MOJIeJII0 TOKJIaZIeHO KBAaJPAaTUUYHUHM MAUCIEPCIiAHUUA B3aKOH [IJsA KOJUBaHb
XBUJIb BUTUHY B HOPMAaJbHOMY HANIPAMKY TOHKOI ILIiBKU Ta JiHilHUN auc-
mepciiHMi 3aKOH JJid KOJMBAHb XBUJb y ILUIOMMHI miaiBku. Hasa Toro, 1mob
POBLUIMPUTH BiKE€ HASABHI MOJENbHI YABJIEHHS IJA TEILJIOMiCTKOCTH TOHKUX
ILTiBOK 3a HU3LKHUX TeMIIepaTyp, BUKOPUCTOBYBaau Mmeron llebas B iHTerpa-
JBbHOMY Bupasi BimbHOI eHeprii. Ileit migxix O6yno posriiAHYyTO HAMU paHiIe
Y MOAENbHUX YABJIEHHAX IOAO TEIJIOMICTKOCTH aHi3OTPOIHUX KBAa3UKPUC-
ranxiB. Omep:KaHi HaHi ITOKa3yIOTh, IO 3aJIEKHICTHh TEILJIOMiCTKOCTM TOHKUX
ILUTIBOK BiJ TeMmIepaTypu Ma€ MAKCHUMyM i MepeBUINyE€ 3HAUEHHS TeIJIOMic-
TKOCTH MacuUBHOTro 3paska. [[aHa obcTaBuMHA HMiATBEPAMKYETHCA €KCIIEPUMEH-
TAJIbHUMU OAaHUMU, OJeP:KaHUMU paHillle iHIMMMYW aBTOpaMHU. 3 BUKODPUC-
TaHHAM HaBeJeHUX MOJEJbHUX YSABJIE€Hb B Po0O0TI mOOYZOBAaHO 3aJIeKHOCTL
TEIJIOMICTKOCTH TOHKUWX ILJIiBOK aJioMiHito Ta mixi Big Temmeparypu. Iloka-
3aHO, IO KPWBA 3aJIE}KHOCTU TEIJIOMICTKOCTH MAa€ MaKCHUMYM i IepeBUIIY€E
TEILIOMICTKiCTh 00’eMHMX 3paskiB amromimiro Ta migi Ha 15%. Pospaxosa-
HO, II[0 3aJIe’KHOCTi, IMOOyIOBaHiI 3a JOMOMOIOI0 HABEAEHOT'0 MOJEJI0, CIIpa-
BeAJINBI JJIsl MeBHOI TOBIIMHM TOHKMX ILIiBOK, a came, mjas 500 i 450 aTom-
HUX IIIapiB s aJlOMiHi0 Ta Mini BigmoBigHo. Takoxk, 3rigHO 3 JiTepaTyp-
HUMU eKCIIePUMEHTAJIbHUMU NAaHWMU, TEIJIOMICTKICThL TOHKHX ILIiBOK 30i-
JBIIYETHCA B IMOPiBHAHHI 31 3HAUEHHAMHU IJII MACHMBHOTO 3pasKa 3i 3MeH-
IIeHHSAM TOBIIWHU IIiBKU. [[aHW YMHHUK TAaKOXK BigoOpaskaeThCcA B MOJeE-
JII0, a PO3PaXYHKOBA 3aJI€’KHICTL 301JIBIITEHHA TOHKUX ILIiBOK BiJ KiJIbKOCTH
aTOMapHUX IMIapiB J00pe KOpeaioe 3 eKCIepUMEeHTAJbHUMHN JaHuMHu. Takum
YHUHOM, 3aIllPOIIOHOBAHUII MOJEJb Ha€ 3MOTy BU3HAUUTH TEIJIOMIiCTKiCTh TO-
HKUX ILIIBOK 3a TeMIlepaTyp, I0 mepeBUINyIOTH [lebGaiioBy TeMmiepaTypy, 3
IOCTATHBOIO TOUHICTIO, HEe IIPOBOAAYN €KCIIEPUMEHTAJILHUX JOCIiIKeHb.

Key words: thin films, film thickness, heat capacity, Debye temperature,
dispersion law.
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1. INTRODUCTION

The development of microelectronic devices is currently associated
with the creation of new materials of small size [1], of the order of
nanometres. Microelectronic devices based on thin films are widely
used in various industries [2]. Performance capabilities of microe-
lectronic systems depend on the thermal characteristics of thin film
structures [1]. Physical properties of materials of such dimensions
may vary several times relative to their bulk properties [3]. Accu-
rate measurement of the thermophysical properties of individual
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thin films is important for the modelling and prediction of mi-
crosystem thermal characteristics [1]. Along with the literature da-
ta for the experimental determination of the heat capacity of thin
films [4—-10], there are also the theories determining the heat capac-
ity of thin films at low temperatures [11-13].

Experimental studies show higher values of the dependence of the
thin film heat capacity compared to that of bulk samples [4, 5]. In
order to determine the dependence of the heat capacity of thin films
on temperatures equal to and exceeding the Debye temperature, it is
expedient to use the Debye’s method [14]. The integration bounda-
ries in the integral expression of free energy were replaced by finite
frequency values in the study of heat capacity of anisotropic quasi-
crystals in [15, 16]. Therefore, the integration took into considera-
tion the temperatures exceeding the Debye temperatures.

Experimental data also show that, in addition to the temperature
dependence, the heat capacity of thin films rises with the decrease
in the film thickness [6, 7], and its values exceed the heat capacity
of bulk samples.

As the thickness of thin films decreases, the key role in the for-
mation of their heat capacity value is played by vibrations of the
corresponding bending waves [11], which are described by the quad-
ratic dispersion law. Consequently, the heat capacity of thin films
will have excess values compared to the heat capacity of a bulk
sample. Taking into account this circumstance and our previous
studies of the heat capacity of anisotropic quasi-crystals [15, 16],
this paper develops a theoretical model for the dependence of the
heat capacity of thin films on the temperatures exceeding the Debye
temperature.

2. MODEL REPRESENTATIONS OF THIN FILM HEAT CAPACITY

Let us consider a thin film of the crystal as a set of interconnected
plates. Here, the interaction between atoms lying in the plane of the
plate and atoms located in the neighbouring planes is considered.
According to [11], each value of the wave vector lying in the plane
of plates corresponds to three waves: two of them are polarized in
the plate plane, and the third one is polarized in the direction nor-
mal to the plate plane. The linear dispersion laws are valid for the
first two waves:

W =X Oy =CYs (1)

where c;, ¢, are group velocities in the plane; y is wave vector
(=K +E).
For the third branch of vibrations (so-called bending waves), the
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dispersion law takes the form
oy =1, (2)

where 7 is group velocity in the normal direction.

Taking into consideration the contribution of sound vibrations,
free energy of the body F at the temperatures T <<® (© is Debye
temperature) is determined by the formula [14]

ho, \) Vdk,dk dk,
F=TY,.| h{l—exp(— Tjj o 3)

where 7 is Planck’s constant; o, is frequency of vibrations of waves
of the a-th branch; V is volume of the body; k., k,, k, are wave vec-
tors.

According to [11], when calculating the internal energy and free
energy for a film, we can limit ourselves to waves where k,=0. Vi-
bration with the wave vector lying in the film plane will be only ex-
cited in the film. Indeed, in accordance with the Bose—Einstein dis-
tribution, we can write the expression for the free energy of an in-
dividual atomic layer of the thin film m for high temperatures in
the form

F,=-Tln) " (exp(-,,/T)) (4)

where n is principal quantum number of the oscillators’ system in
one layer. When we represent ¢,, =nho,, exp(-nho,/T)=x",

:O=1X” = (1—X)71 , then, Eq. (4) can be rewritten as

F, = Tln(l — exp [—E%D , (5)

where %o, is energy of transition between quantum states n. For
the case T > hw,, after expansion of the exponent to the first
term,

F =Tlnx (6)
T
For the multilayer system from (6), we can write
m o ho, ho hw )"
F=T In—=TmIn—=TIn| —| , 7
Zi:l T T [ T j ()

where the expression for the geometric mean frequency was used:
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hﬁf m h(D
In— = In—L m.
T (Zil T j /

Thus, the free energy and, hence, the thermodynamic potential of
thin films in the normal direction to the film plane have insignifi-
cant values, compared to the bulk structures, since the number of
layers m in the film is several orders of magnitude less than M (the
number of layers in the bulk structures), and thus,

(hmjm [hij
— L= -
T T
Consequently, wave vibrations in the orthogonal direction can be
ignored for this model.

Therefore, integration in formula (3) will be carried out only by
dk.dk, in the film plane. Accordingly, (3) is rewritten as

2 ho, ) Sdk,dk,
F =T2a_lfln[1—exp[— TD ey ®

where S is film surface area. Summation in (8) is performed in two di-
rections, i.e., vibrations in the plate plane (1) and vibrations in the di-
rection of the normal to the plane of the bending waves’ plate (2).

Integration with respect to dk . dk, can be extended from —co to o
and replaced by the integration over 2mnydy [14]. Therefore,

= %[Iln@ -exp(~hey/T))xdy + f In (1~ exp(- hvxz/T))xdx]. ©)

Using the Debye formalism [14], we replace the upper limit of
integration o by

where o, is the Debye frequency. Thus, formula (9) will be applica-
ble for calculations at the temperatures comparable to and exceed-
ing the Debye temperature.

Let us consider the first integral (9):

F = ZT%um(l—exp(—hcx/T))deJ. (10)

Now, we make a substitution of the variable x =hecy/T and take
yx out of the integral sign as a value, which varies only slightly,
that is quite acceptable [17]:
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2T%S % L
F = X{ln(l—e ) . (11)

Performing the integration by parts, we obtain two terms:

_2T%S | xPdx
(he)*2my e —1°

2
F:2TS

= e xy In (1 - e‘y)

(12)

When expanding the exponent into a series in the first term in
(12) to the first term and using the thermodynamic equations
S, =—-0F/0T, E=F+TS,, where S, is entropy, E is internal ener-
gy, we obtain for the heat capacity of the first term (12):

u=op Tk

For the second term of (12), by expansion of the exponent into a
series to the second term, we get

(13)

~ 2T3S T xdx

(he)’ 2moy 1+ x/2° (14

After integration by parts and expansion of In(1+ x/2) into a se-
ries to the sixth term, we obtain for (14)

3 2 3 4 5 6 7
2TS(y v oy Yy Ly yj_ (15)

(he)’2n\ 2 6 16 40 96 224
From here, it follows as
2 2 3 4 5
sl L, L L L D) g
2r (2 6T 16T7T° 40T° 96T* 224T

where L = hcy. When entropy and energy for the heat capacity cor-
responding to the second term of a free energy (12) is found, we get

S 2(1 31> 21 5L 6L5j

(17)

C,=—— - + - +
2= Ty X 8T2 ' 5T° 16T' @ 287"

By summing two terms of the heat capacity (13) and (17), we ob-
tain an expression for the found value of heat capacity correspond-
ing to the first term of free energy of the expression (9):

30 20° 50@* 60°
2 3 T 1 5 |°
8T 5T 16T 28T

C, = 33(1 + (18)
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2
We took into account in the expression (18) that ixz = % .
2n 2n°dz

After integration of the area over dz and k? over dk, (since k&, ~ 1/2),

we get S VE

8t 5 ¥ ~ o3
ficients of the terms of expansion into a series are similar in their
physical expression to the Debye temperatures, since they are the
products of the Planck’s constant and complex frequencies at the
boundary of the Brillouin zone, i.e., Debye frequencies (determined
by the limits of integration).

Now, we shall calculate the heat capacity corresponding to the
second term in the expression (9) of the free energy:

= 3R, which is the Debye sphere 3R [14]. Coef-

F,=2T=> Uln(l exp (~/uyy? /T))de] (19)

After substitution of the variable z = fyy?/T and integration by
parts, we get

T2S J' ln

2 Yy
_ TS yln(1-e*)-| 2dz | (20)
hy2rc hyZn e —1

Similarly to (13), we obtain the expression for the heat capacity
for the first term of (20):

_0E _ s2
A

Then, we expand the exponent into a series in the second term of
the expression (20):

(21)

TSt de TS
2y (1+2/2)  Iy2n

21n(1+2/2). (22)

Further, by expansion of the logarithm function into a series to the
sixth term, we obtain

2 2 3 4 5 6
_Ts y-4 Y 9 .Y Y | (23)
hy2n 4 12 32 80 192

From here,

(24)

TSy? L r r L r
|1t 2 5+ o 5
2n AT 12T% 382T° 80T* 192T
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where L =hyy®. After finding the entropy and energy, we obtain
the expression for the heat capacity corresponding to the second
term in (20):

Cy, =

_sxz[l_ r r sr L5]. 25)

+ - +
21 4T?  4T® 16T* 8T°

By summing (21) and (25), we get the expression for the heat capac-
ity corresponding to the second integral of (9) in the free energy:

e e? 30* ®°
2 3T 1 5 |°
4T 4T 16T 8T

C, = SR[ (26)

The heat capacity (26) is a contribution to the heat capacity from
vibrations of the bending waves, which is determined by anisotropy
of the dispersion laws in this model.

Therefore, full expression for the heat capacity of a thin film at
high temperatures will be as follows:

5@° 130° O 19@5]

— + 27
8T? 20T® 2T* 56T° (27)

C=CI+C2=3R[1+

Figures 1, 2 shows the constructed temperature dependences of
the heat capacity for thin copper and aluminium films.

3. RESULTS AND DISCUSSION

As shown in Figs. 1, 2, temperature dependence of the heat capaci-
ty has a maximum of about 29 J/(mol-K). The heat capacity in-
crease above the value of 3R can be explained by the contribution of
vibrations of bending waves, obeying the quadratic dispersion law,
to the heat capacity. Consequently, the heat capacity of thin crystal
films will have increased values at high temperatures and differ
from the heat capacity of crystalline bodies, which obeys the Du-
long—Petit law. The papers [4, 6] deal with the experimental study
of the heat capacity of thin aluminium and copper films in the tem-
perature interval of 300—420 K. It is shown that, in this tempera-
ture range, the heat capacity of thin aluminium films of 430 nm
thick [6] is higher than the heat capacity of bulk samples by = 20%.
Thin copper films’ heat capacity [4] with the decrease in the film
thickness below 340 nm will also rise compared to the heat capacity
of bulk samples in this temperature range. The results of depend-
ences of the heat capacity of aluminium and copper on the tempera-
ture constructed with the use of the model proposed in this paper
are given in Figs. 1, 2. The figures show that, with the increase in
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Fig. 1. Temperature dependence of the heat capacity of thin aluminium
film of 500 atomic layers thick.
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Fig. 2. Temperature dependence of the heat capacity of thin copper film of
450 atomic layers thick.

the temperature, the heat capacity of thin films rises by 15%, on
average, compared to the heat capacity of bulk samples.

Further, it is expedient to form the estimated characteristics of
the film thickness, for which this model is valid, and to evaluate
the nature of changes in the heat capacity of thin films when the
film thickness is decreased. We neglect vibrations in the direction
normal to the film plane for this model. In accordance with (5), the
exponential term in the expression for the free energy of one layer

can be represented as
hw ®
exp| —— |~ exp| ——|, 28
p( Tj p( mT] (28)
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where © is the Debye temperature of the multilayer system, m is
number of atomic layers. In this case, the expression under the log-
arithm sign, which determines the free energy value in accordance

with thermodynamic concepts, —NT + T'In (1 —exp [—%D , is to be
m

®Tj ~ 0.998 (less than unity),

positive, i.e., >~ exp (—
k

N-— 1 (29)

®
exp(Tj 1
Consequently, the number of atomic layers m, for aluminium
films at the considered temperatures (400 K) will be of about 500
layers. In this case, as shown above, the excess heat capacity of al-
uminium films will be 15% of the heat capacity of a bulk sample.
The excess heat capacity of a thin film AC =C - 3R, according to

thermodynamic concepts [14], will depend on the number of atomic
layers at a certain temperature as follows:

O\ 2T
o o) P (TJ (@ - 1)
AC, = 3R| exp (——j [1 + j+ ~1|. (30)

m mT m

The excess heat capacity of thin film will rise with regard to the
excess heat capacity of a film with the number of atomic layers m,,
respectively, by AC, /Aka times. When calculating, we expand the
exponential function (30) in a series up to the fourth term.

Thus, thin aluminium film of 20 nm thick will have 30 atomic
layers, and its excess heat capacity will be higher than the excess
heat capacity of aluminium film with 500 layers and by 2.4 times

(0.15ACm/Aka) higher compared to the heat capacity of a bulk

sample.

The number of atomic layers m, for the copper film at the tem-
peratures of = 350 K, based on (29), will be about 450. The heat ca-
pacity in this case is 1.15 times higher than the heat capacity of a
bulk copper sample. Thin copper film of 20 nm thick will have 33
atomic layers and it heat capacity exceed the heat capacity of a bulk
sample by a factor of 3.2.

The paper [7] considers the temperature dependence of thin plati-
num films of 40 nm thick. It is shown that, at the temperature of
300 K, the heat capacity has maximum values and exceeds the val-
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ues of a bulk sample by 1.8-2.3 times. Further, as the temperature
rises, the heat capacity decreases. According to our calculations
based on (29), m, =380 layers. At the thickness of 40 nm, thin plat-
inum film will have about 60 layers. Accordingly, at the tempera-
ture of 300 K, the heat capacity of thin platinum film of 40 nm
thick will exceed the heat capacity of a bulk sample by 2.0, which is
comparable with [7].

Therefore, the excess heat capacity of thin films described by this
model, compared to the heat capacity of a bulk sample, agrees with
the results of experimental studies on the heat capacity of thin films
[4—-7]. Tt should be noted that the proposed model could be used to
calculate the heat capacity of thin films based on the input parame-
ters: the Debye temperature, film thickness, and temperature. We
should also indicate that the model considers the heat capacity for
thin films of pure metals only. The development of a model to calcu-
late the heat capacity for the films comprising several layers of dif-
ferent materials will be the subject of our further research.

4. CONCLUSIONS

The paper presents the model of calculation of the heat capacity for
temperatures comparable to and exceeding the Debye temperature.
The model describes thin films of the maximum thickness, at which
the contribution of wave vibrations in the normal direction to the
film plane to the integral expression of the free energy can be ne-
glected. It is found that the temperature dependence of the heat ca-
pacity of thin films will have a maximum and increased values
compared to bulk samples. It is shown that, at film thickness of 500
and 450 atomic layers, respectively, for aluminium and copper at
the temperatures of about 400 K and 350 K, the heat capacity of
thin films exceeds the heat capacity of bulk samples by 1.15 times
that is confirmed by experimental studies of the other authors.

The proposed model takes into consideration the experimental da-
ta regarding the dependence of the heat capacity of thin films on
the film thickness collected from the literature. It is found that,
with the decrease in the film thickness, the heat capacity will rise
and, at 40 nm for platinum, it will exceed the heat capacity of bulk
samples by = 2.0 times that agrees with the experimental data.

This work was performed within the research ‘Adhesion Strength
of Galvanic Coatings’ (state registration No. 0121U13278).
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