© 2022 ІМФ (Інститут металофізики ім. Г. В. Курдюмова НАН України) Надруковано в Україні.

PACS numbers: 68.37.Hk, 68.37.Vj, 81.70.Fy, 82.35.Np, 87.19.xb, 87.64.M-, 87.85.Rs

Synthesis and Morphology Characteristics of PMMA/CeO₂/SiO₂ Nanostructures for Antibacterial Application

Ola Basim Fadil and Ahmed Hashim

College of Education for Pure Sciences, Department of Physics, University of Babylon, Hillah, Iraq

In this work, nanocomposite films are prepared by casting method from polymethyl methacrylate (PMMA) with various ratios of nanomaterials (SiO₂-CeO₂): 1.4, 2.8, 4.2 and 5.6 wt.%. The structural properties are investigated by means of the optical and field emission scanning electron microscopies. The results show that there is a good-homogeneity distribution of SiO₂/CeO₂ nanoparticles within the polymeric mixture. The PMMA/SiO₂/CeO₂ nanocomposites are tested for antibacterial application. The results show that the inhibition-zone diameter increases with increase in the SiO₂/CeO₂ nanoparticles' concentrations.

У цій роботі нанокомпозитні плівки готуються методом лиття з поліметилметакрилату (ПММА) за різних співвідношень наноматеріялів (SiO₂–CeO₂): 1,4, 2,8, 4,2 і 5,6 мас.%. Структурні властивості досліджуються за допомогою оптичної й автоемісійної сканувальної мікроскопій. Результати показують, що є розподіл наночастинок SiO₂/CeO₂ з хорошою однорідністю в полімерній суміші. Нанокомпозити ПММА/SiO₂/CeO₂ тестуються на антибактеріяльне застосування. Результати показують, що діяметер зони інгібування збільшується зі збільшенням концентрації наночастинок SiO₂/CeO₂.

Key words: nanocomposites, polymethyl methacrylate, SiO₂, CeO₂, structural properties, antibacterial agents.

Ключові слова: нанокомпозити, поліметилметакрилат, SiO₂, CeO₂, структурні властивості, антибактеріяльні засоби.

(Received 14 February, 2022)

1. INTRODUCTION

Nanocomposites of polymers and inorganic nanoparticles (NPs) have

1029

attracted increasing interest due to their value-added applications derived from their unique optical, magnetic, electrical, thermal, and antibacterial properties [1]. Polymers have played a very important role in many areas of daily life as traditional materials [2, 3]. Polymers are characterized by their resistance to abrasion, flexibility, colour fastness, ease of processing, lightness, *etc.* [4].

Polymethyl methacrylate (PMMA) was chosen in this study because it is non-toxic, cost-effective, and effortless to get. PMMA has appropriate material properties such as distinguished mechanical quality, hardness, excessive rigidity, transparency, and good insulation residences [5]. Cerium oxide nanoparticles (CeO₂ NPs) have attracted much attention for their high stability, surface chemistry, and biocompatibility. CeO₂ NPs are transparent in the visible region and have a refractive index of 2.2 at a wavelength of 632 nm. Pure CeO₂ exhibits a wide indirect optical band gap and energy-wide band gap that operates effectively in the ultraviolet region, and thus, it could be an excellent choice for different optical and electronic applications [6]. Silicon dioxide (SiO₂) commonly referred to as silica, which may exist in the amorphous and crystalline structure, was found to be useful filler for improving the mechanical performance of polymeric materials. The silica, as an additive, is used in coatings, food, and biomedical applications [7]. The oxides' nanostructures and nanooxides-doped polymers were included many applications in different industrial approaches such as sensors, electronics and optoelectronics [8-32], and bioenvironmental fields [33–39].

The present work deals with preparation of $PMMA/SiO_2/CeO_2$ nanocomposites for antibacterial applications.

2. MATERIALS AND METHODS

Films of PMMA/SiO₂/CeO₂ nanocomposites were prepared from PMMA and PMMA doped with SiO₂ and CeO₂ nanoparticles using casting method by dissolving 1.5 g of PMMA in 30 ml of chloroform; then, the SiO₂/CeO₂ NPs were added to PMMA with different ratios: 1.4, 2.8, 2.8, 4.2, 5.6 wt.%. Microscopic images of the pure polymer and the nanocomposites were measured using optical microscopy with a magnification of ×10. Field emission scanning electron microscopy (FE-SEM) was used to examine the surfaces' nature of the polymer and PMMA/SiO₂/CeO₂ nanocomposites. These nanocomposites were tested for antibacterial activity against gram-positive (*Staphylococcus aureus*) and gram-negative (*Proteus*) bacteria by diffusion method.

3. RESULTS AND DISCUSSION

The SiO_2/CeO_2 NPs distribution inside the PMMA matrix are shown

in Figs. 1 and 2.

Fig. 1. Microscope images (×10): *a*—pure polymer; *b*—1.4 wt.% SiO₂/CeO₂ NPs; *c*—2.8 wt.% SiO₂/CeO₂ NPs; *d*—4.2 wt.% SiO₂/CeO₂ NPs; *e*—5.6 wt.% SiO₂/CeO₂ NPs.

Fig. 2. FE-SEM images: *a*—pure polymer; *b*—1.4 wt.% SiO₂/CeO₂ NPs; *c*—2.8 wt.% SiO₂/CeO₂ NPs; *d*—4.2 wt.% SiO₂/CeO₂ NPs; *e*—5.6 wt.% SiO₂/CeO₂ NPs.

The figures demonstrate that the images of optical microscopy and FE-SEM for PMMA/SiO₂/CeO₂ nanocomposites. From these figures, the SiO₂/CeO₂ nanoparticles are aggregated as clusters at low concentrations, but they form a paths network inside the polymer matrix at high concentration [40].

Figures 3 and 4 illustrate the antibacterial activity of $PMMA/SiO_2/CeO_2$ nanocomposites against gram-positive (*Staphylococcus aureus*) and gram-negative (*Proteus*) bacteria. From these figures, the inhibition-zone diameter increases with increasing SiO_2/CeO_2 -nanoparticles' concentrations. The major mechanism that caused the antibacterial activity by the metal-oxide NPs might be through oxidative stress caused by ROS. ROS includes radicals like

Fig. 3. Antibacterial activity of PMMA/SiO₂/CeO₂ nanocomposites against gram-positive (*Staphylococcus aureus*) bacteria.

Fig. 4. Antibacterial activity of $PMMA/SiO_2/CeO_2$ nanocomposites against gram negative (Proteus) bacteria.

superoxide radicals (O^{-2}), hydroxyl radicals (^{-}OH), hydrogen peroxide (H_2O_2) and singlet oxygen ($^{1}O_2$), which could be the reason of damaging the proteins and DNA in the bacteria. ROS could be produced by the present nanocomposites leading to the inhibition of most pathogenic bacteria [41, 42].

4. CONCLUSION

This work includes of fabricating the $PMMA/SiO_2/CeO_2$ nanocomposites' films for antibacterial applications. The morphology properties of $PMMA/SiO_2/CeO_2$ nanocomposites were tested to use for antibacterial applications. The results of antibacterial activity of $PMMA/SiO_2/CeO_2$ nanocomposites demonstrate that the inhibition-zone diameter increases with increase in the SiO_2/CeO_2 concentrations against gram-positive (*Staphylococcus aureus*) and gram-negative (*Proteus*) bacteria.

REFERENCES

- 1. W. Wang, B. Zhang, S. Jiang, H. Bai and S. Zhang, *Polymers*, **11**: 458 (2019); doi:10.3390/polym11030458
- S. V Glushanin, V. Y. Topolov, and A. V. Krivoruchko, Materials Chemistry and Physics, 97, Nos. 2-3 (2006); https://doi.org/10.1016/j.matchemphys.2005.08.027
- P. Marin-Franch and Pelaiz-Barranco, Journal of Applied Physicc, 97, No. 3 (2005); https://doi.org/10.1063/1.1847727
- 4. M. A. S. Mohammed and A. S. Saleh, *Iraqi Journal of Science*, **59**, No. 1A (2018); https://ijs.uobaghdad.edu.iq/index.php/eijs/article/view/57
- 5. S. M. Solyman, H. R. Ali, and Y. M. Moustafa, *Egypt. J. Chem.*, **64** (2021); doi:10.21608/EJCHEM.2021.55304.3172
- Areen A. Bani-Salameh, A. A. Ahmad, A. M. Alsaad, I. A. Qattan, and Ihsan A. Aljarrah, *Polymers*, 13 (2021); https://doi.org/10.3390/polym13071158
- M. Kaseem, Z. U. Rehman, S. Hossain, A. K. Singh, and B. Dikici, *Polymers*, 13, No. 18: 3036 (2021), https://doi.org/10.3390/polym13183036
- 8. A. Hashim, J. Mater. Sci.: Mater. Electron., 32: 2796 (2021); https://doi.org/10.1007/s10854-020-05032-9
- A. Hashim, A. J. K. Algidsawi, H. Ahmed, A. Hadi, and M. A. Habeeb, Nanosistemi, Nanomateriali, Nanotehnologii, 19, No. 2: 353 (2021); https://doi.org/10.15407/nnn.19.02.353
- A. Hashim, A. J. K. Algidsawi, H. Ahmed, A. Hadi, and M. A. Habeeb, Nanosistemi, Nanomateriali, Nanotehnologii, 19, No. 1: 91 (2021); https://doi.org/10.15407/nnn.19.01.091
- 11. B. Mohammed, H. Ahmed and A. Hashim, *Journal of Physics: Conference Series*, **1963** (2021); doi:10.1088/1742-6596/1963/1/012005
- 12. H. Ahmed and A. Hashim, International Journal of Scientific & Technology

Research, 8, No. 11 (2019).

- B. Mohammed, H. Ahmed, and A. Hashim, Journal of Physics: Conference Series, 1879 (2021); doi:10.1088/1742-6596/1879/3/032110
- 14. H. Ahmed and A. Hashim, *Silicon*, **14**: 4079 (2022); https://doi.org/10.1007/s12633-021-01186-1
- 15. H. Ahmed and A. Hashim, *Trans. Electr. Electron. Mater.* (2021); https://doi.org/10.1007/s42341-021-00340-1
- N. Al-Huda Al-Aaraji, A. Hashim, A. Hadi, and H. M. Abduljalil, *Silicon* (2021); https://doi.org/10.1007/s12633-021-01265-3
- 17. H. Ahmed and A. Hashim, *Silicon*, **14**: 7025 (2022); https://doi.org/10.1007/s12633-021-01465-x
- 18. H. Ahmed and A. Hashim, *Silicon*, **13**: 1509 (2021); https://doi.org/10.1007/s12633-020-00543-w
- A. Hazim, A. Hashim, and H. M. Abduljalil, *Trans. Electr. Electron. Mater.*, 21: 48 (2019); https://doi.org/10.1007/s42341-019-00148-0
- H. Ahmed, A. Hashim, and H. M. Abduljalil, Ukr. J. Phys., 65, No. 6 (2020); https://doi.org/10.15407/ujpe65.6.533
- A. Hashim, H. Abduljalil, and H. Ahmed, *Egypt. J. Chem.*, 62, No. 9 (2019); doi:10.21608/EJCHEM.2019.7154.1590
- 22. A. Hashim, Journal of Inorganic and Organometallic Polymers and Materials, 30 (2020); https://doi.org/10.1007/s10904-020-01528-3
- A. Hashim and Z. S. Hamad, Nanosistemi, Nanomateriali, Nanotehnologii, 18, No. 4: 969 (2020); https://doi.org/10.15407/nnn.18.04.969
- A. Hashim, A. J. Kadham, A. Hadi, and M. A. Habeeb, Nanosistemi, Nanomateriali, Nanotehnologii, 19, No. 2: 327 (2021); https://doi.org/10.15407/nnn.19.02.327
- A. J. K. Algidsawi, A. Hashim, A. Hadi, M. A. Habeeb, Semiconductor Physics, Quantum Electronics & Optoelectronics, 24, No. 4: 472 (2021); https://doi.org/10.15407/spqeo24.04.472
- 26. A. Hazim, A. Hashim, and H. M. Abduljalil, *Egypt. J. Chem.*, **64**, No. 1 (2021); doi:10.21608/EJCHEM.2019.18513.2144
- 27. H. Ahmed and A. Hashim, Silicon, 13: 2639 (2021); https://doi.org/10.1007/s12633-020-00620-0
- 28. A. Hazim, H. M. Abduljalil, and A. Hashim, *Transactions on Electrical and Electronic Materials* (2020); https://doi.org/10.1007/s42341-020-00224-w
- 29. A. Hazim, H. M. Abduljalil, and A. Hashim, *Transactions on Electrical and Electronic Materials* (2020), https://doi.org/10.1007/s42341-020-00210-2
- H. Ahmed and A. Hashim, Journal of Molecular Modeling (2020); doi:10.1007/s00894-020-04479-1
- 31. H. Ahmed and A. Hashim, *Silicon*, 14: 4907 (2022); https://doi.org/10.1007/s12633-021-01258-2
- 32. A. Hashim, Opt. Quant. Electron., 53: 478 (2021); https://doi.org/10.1007/s11082-021-03100-w
- A. Hashim and N. Hamid, Journal of Bionanoscience, 12, No. 6 (2018); doi:10.1166/jbns.2018.1591
- A. Hashim and Z. S. Hamad, Journal of Bionanoscience, 12, No. 4 (2018); doi:10.1166/jbns.2018.1561
- 35. B. Abbas and A. Hashim, International Journal of Emerging Trends in Engineering Research, 7, No. 8: 131 (2019);

https://doi.org/10.30534/ijeter/2019/06782019

- 36 K. H. H. Al-Attiyah, A. Hashim, and S. F. Obaid, Journal of Bionanoscience, 12 (2018); doi:10.1166/jbns.2018.1526
- A. Hashim and Z. S. Hamad, Journal of Bionanoscience, 12, No. 4 (2018); doi:10.1166/jbns.2018.1551
- D. Hassan and A. Hashim, *Journal of Bionanoscience*, **12**, No. 3 (2018); doi:10.1166/jbns.2018.1537
- 39. D. Hassan and A. Hashim, *Journal of Bionanoscience*, **12**, No. 3 (2018); doi:10.1166/jbns.2018.1533
- 40. N. B. R. Kumar, V. Crasta, R. F. Bhajantri, and B. M. Praveen, *Journal of Polymers*, **2014**: 1 (2014); http://dx.doi.org/10.1155/2014/846140
- 41. Y. T. Prabhu, K. V. Rao, B. S. Kumari, V. S. S. Kumar, and T. Pavani, *Int. Nano Lett.*, 5: 85 (2015); https://doi.org/10.1007/s40089-015-0141-z
- 42. A. Hashim, I. R. Agool, and K. J. Kadhim, *Journal of Bionanoscience*, 12, No. 5 (2018); doi:10.1166/jbns.2018.1580