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Based on the modified superexchange model, analytical expressions are ob-
tained, which are convenient for analysing the tunnelling current through a 

molecular wire consisting of a regular chain connected to the electrodes by 

terminal groups. An ohmic tunnelling regime is considered, in which the 

terminal groups act as contact barriers, and the interaction of the chain with 

the electrodes is parameterized in the width factors. Analytical expressions 

for the current show that, for certain ratios between the key superexchange 

parameters, these expressions coincide in form with the expressions for the 

current obtained within the framework of the barrier model and the standard 

superexchange model, thereby showing the applicability conditions of these 

models. Thus, the barrier model can be used to analyse the current–voltage 

characteristics of the molecular wire in the presence of strongly delocalized 

molecular chain orbitals, whereas the standard superexchange model works 

with strong localization of molecular orbitals, i.e., with ‘deep’ tunnelling. 
The modified superexchange model also shows that a purely exponential cur-
rent drop with increasing chain units appears, starting from a certain chain 

length, and depends significantly on the magnitude of the attenuation factor. 

An illustration of the results is for chains consisting of one-site and two-site 

repeating units. For such chains, in addition to the expressions for attenua-
tion coefficients, formulas for preexponential factors are obtained, and it is 

shown that the estimation of the contact current by approximating the cur-
rent–voltage characteristics of the wire to the possible value of the current at 

zero chain length is physically unjustified. For estimates of contact current, 

the minimum internal wire length must include two structural units of the 

chain. 

Із використанням модифікованого суперобмінного моделю одержано ана-
літичні вирази, які є зручними для аналізи тунельного струму через мо-
лекулярний провід, що складається з реґулярного ланцюжка, з’єднаного 

з електродами кінцевими групами. Розглядається режим омічного туне-
лювання, в якому кінцеві групи працюють як контактні бар’єри, а взає-
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модія ланцюжка з електродами параметризується з врахуванням коефі-
цієнтів ширини. Аналітичні вирази для струму показують, що за певних 

співвідношень між ключовими суперобмінними параметрами ці вирази 

збігаються за формою з виразами для струму, які можна одержати в рам-
ках бар’єрного моделю та стандартного суперобмінного моделю. Таким 

чином показано умови застосовности двох останніх моделів. Так, 
бар’єрний модель може використовуватися для аналізи вольт-амперних 

характеристик молекулярного проводу за наявности сильно делокалізо-
ваних молекулярних орбіталей ланцюжка, у той час як стандартний су-
перобмінний модель працює за сильної локалізації молекулярних орбіта-
лей, тобто за «глибокого» тунелювання. Модифікований суперобмінний 

модель демонструє також, що чисто експоненційне спадання струму із 

збільшенням кількости ланок ланцюжка з’являється, починаючи з пев-
ної довжини ланцюжка, й істотно залежить від величини фактора згасан-
ня. Ілюстрацію результатів проведено для ланцюжків, які складаються з 

одноцентрових і двоцентрових одиниць, що повторюються. Для таких 

ланцюжків, окрім виразів для коефіцієнтів згасання, одержано формули 

для передекспоненційних факторів і показано, що оцінка контактного 

струму шляхом апроксимації вольт-амперної характеристики проводу до 

можливого значення струму за нульової довжини ланцюжка фізично не-
виправдана. Для оцінок контактного струму мінімальна внутрішня дов-
жина проводу має містити дві структурні одиниці ланцюжка. 
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1. INTRODUCTION 

One of the important problems of molecular electronics is to elucidate 

the mechanisms of formation of current through individual molecules 

and molecular nanostructures [1–4]. Among the latter, a special role 

belongs to molecular wires, which carry out the distant transport of 

charges (electrons/holes) in devices capable of performing the func-
tions of the basic elements of molecular electronics [5–7]. Molecular 

wires are chains of repeating monomers (structural units of a regular 

chain) and terminal groups, through which the wire establishes the 

communication between the functional elements of the circuit or metal 
contacts. Studies carried out using scanning tunnelling and atomic 

force microscopes showed that in the ohmic regime of charge transmis-
sion the current through the molecular wire is formed mainly due to 

the electron/hole tunnelling. The experiment shows an exponential 
current drop with increasing the length of the interior part of the wire. 
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This drop is well described by the expression [8–11] 

 d

cI I e , (1) 

where d (in Å) is the tunnelling length. The current attenuation factor 

 (in Å
1) characterizes the structural and energy characteristics of the 

regular chain, and the value c
I  is associated with the injection (con-

tact) current, which is often estimated using the approximation 

0|limc d
I I


 . Analytical expressions for  and cI  are obtained in the 

framework of a particular physical model of charges tunnelling in a 

system ‘electrode L–molecular wire–electrode R’ (LMR junction). The 

most popular are the Simmons model of electron tunnelling through a 

rectangular barrier and the McConnel superexchange model [12, 13] 
(see the use of models, for example, in [9, 11, 14–16]). Recently, a 

modified superexchange model of tunnelling transmission has been 

proposed, from which the expressions for the attenuation factors ob-
tained in the framework of the Simmons and McConnel models follow 

as special cases [17, 18]. 
 In this work, we compare the expressions for the factors  and c

I , 

obtained within the framework of the above models and find the condi-
tions for the applicability of the models to describe the current–
voltage characteristics of molecular wires under the ohmic regime of 

charge transmission. 

2. THEORETICAL MODELS 

Each model leads to expression for the factors  and c
I , which contain 

a certain set of parameters that reflect the structural and energy char-
acteristics of the LMR junction. 

2.1. Flat-Barrier Simmons Model 

The model uses three main parameters: the barrier height E, the bar-
rier width d (Fig. 1) and the effective tunnelling mass m

*. In the case of 

Ohm regime, which works under the condition 

 | |eV E , (2) 

where V is the voltage bias and | |e e   is the electron charge, using 

the Simmons model [12] leads to the expression for current density 

J I   where  is the number of wires that come in contact with the 

surface area, through which current actually passes. (In self-
assembled monolayers,  is about (4–5)1014

 wires per cm
2
 [9].) The cur-
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rent across a single molecular wire appears in the form (1) where the 

current drop is characterized by the attenuation factor 

 *
(2 / ) 2BR m E     , (3) 

whereas the pre-exponential factor reads 

 
2 *

2 2

2

4
c

V e m E
I

d

 
  

 
. (4) 

 We see, however, that 0 limd c
I    and, therefore, from the physi-

cal point of view, the c
I  cannot be identified with the injection cur-

rent. Thus, a simple flat-barrier model does not work in the contact re-
gion. It cannot also be used to evaluate the near zero bias contact con-

ductance   0
/ |c c VG I V


   . 

 A more accurate application of the flat-barrier model implies the 

presence of contact areas formed by the terminal units of the molecular 

wire. In this case, the left (right) terminal unit is considered as a rec-

 

Fig. 1. Energy (a) and structural (b) schemes for electron tunnelling through a 

terminated molecular wire of length C in the barrier model. An electron tun-
nels from the left electrode to the right one with energy arranged in the 

 ,
L R

   energy window. The height and width of the interior tunnel barrier 

are d Nl  and E, respectively. The terminal units of wire X and Y create 

contact barriers with the corresponding widths dL and dR. 
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tangular barrier spacer with a width  L R
d d  (cf. Fig. 1). Consequently, 

at the ohmic tunnelling regime, the pre-exponential factor in the Eq. 

(1) can be represented as  

 
dd

R RL L
cI VAe e


 , (5) 

where A is the constant, whereas L and R are the hypothetical decay 

parameters [9]. 
 Despite the fact that the flat-barrier model describes the exponen-
tial drop in the tunnelling current with an increase in the interior re-
gion of the molecular wire (cf. Eqs. (1) and (4)), the physical justifica-
tion of its applicability for the analysis of current–voltage characteris-
tics meets noticeable difficulties. This refers to the specification of 

both the pre-exponential factor Ic, Eq. (1), and especially the attenua-
tion coefficient , Eq. (3). 
 It is known that the ohmic regime is valid up to V(0.2–0.4)V [8, 

19]. Therefore, in accordance with the inequality (2), the height of the 

barrier should be several eV. Meanwhile, the experiment shows that 

the value E  is about 1 eV (chain with saturated bonds [8, 20]) and less 

than 0.5 eV (chain with conjugated bonds [21]), which does not corre-
spond to the inequality (2). A problem also exists with determining the 

effective tunnelling mass m
*
 for a finite chain. 

2.2. McConnell’s Superexchange Model 

McConnell has suggested that because of overlapping MOs of neigh-
bouring units in the donor–chain–acceptor structure (see Fig. 2, a), a 

distant superexchange coupling arises between the donor and the ac-
ceptor [13]. This opens the way for coherent electron transfer between 

spaced redox centres. In the superexchange mechanism of electron 

transfer, the chain connecting the donor and the acceptor acts as a 

bridge. This means that the bridge orbitals participate in a virtual 
way, playing the role of a mediator. According to McConnell model, the 

value of the superexchange donor–acceptor coupling decreases expo-
nentially with an increase in the number of bridging chain units. As 

for the LWR junction, the role of the donor and acceptor belongs to the 

electrodes, and the molecular wire serves as a mediator of electron 

transfer. The interelectrode tunnelling current shows an exponential 
drop with increasing of the number N of repeating chain units [14]. It 

can be shown that in the ohmic regime of the tunnelling charge trans-
mission, the expression for the current has the form 

  ( 2)
N

N
MCI I e N


  . (6) 

Here, the attenuation factor (per chain unit) reads  
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  2ln /N MC s sE t     , (7) 

where s
E  and ts are the key parameters of the superexchange model. 

The first parameter is associated with the transmission gap, which is 

defined as > 0s F sE E E    ( > 0)
s s F

E E E    for the hole (elec-
tron) tunnelling. Physically, the E corresponds to the energy distance 

between the position of the Fermi level of the electrode, EF, and the po-
sition of the localized orbitals of the identical chain units, 

1 2
...s NE E E E    , which are involved in the formation of super-

exchange coupling (Fig. 2, b). Typically, these frontier orbitals are 

HOMO or LUMO (highest occupied or lowest unoccupied orbitals, re-

 

Fig. 2. The formation of the main superexchange-tunnelling pathway is due to 

the overlap of molecular orbitals localized on the structure units of the wire, 
as well as the overlap between terminal orbitals and surface atomic orbitals 

belonging to adjacent electrodes (a). Principal transmission gap s
E  at strong 

localization (b) and strong delocalization (c) of molecular chain orbitals. An 

apparent rectangular barrier appears with strong delocalization (c). 
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spectively). The ts parameter characterizes the coupling between the 

neighbouring chain orbitals noted above. The pre-exponential factor  

  2

0
/MC L R sI Vg t   , (8) 

where 
2

0
/ ( )g e   77.4 S is the unity conductance, contains quan-

tities L
  and R

 , which are the broadening of the energy levels of the 

chain edge units. The broadenings are caused by the interaction of 

these units with the corresponding adjacent electrodes L and R. If l (in 

Å) is the wide size of structure unit of the chain, then the tunnelling 

width is d Nl . Comparing the expressions (1) and (6), one can set 

c MCI I  and 

 
1

Nl   . (9) 

 The advantage of the superexchange model is that the parameters 

used in it are directly related to the structural and energy characteris-
tics of the molecular junction and, thus, have a clear physical meaning. 

2.3. Modified Superexchange Model 

The difference between the modified superexchange model and the 

standard (McConnell’s) model is the absence of restrictions on its key 

parameters Es and ts. As a result, instead of expression (7), the unbi-
ased attenuation factor is obtained in the form [22, 23] 

  
2

2ln 2 / 2 1N MD s s s sE t E t        
  

. (10) 

 As for the tunnelling current (in ohmic regime), according to recent 

results [17, 18], it reads 

  ,MD NI I N   . (11) 

Here, 

  
 

2

2

sinh
,

( 1) / 2sinh

N
N

N

N
N


  

 
 (12) 

is the attenuation function, while 

  2

0
/MD L R sI Vg E     (13) 

is the tunnelling current mediated by a single bridging unit. (Note that 

 ,1 1N   .) 
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3. RESULTS AND DISCUSSION 

The main goal of the work is to compare analytical expressions describ-
ing the tunnelling current–voltage characteristics in the framework of 

the most popular physical models. To do this, we consider the limiting 

cases resulting from the modified superexchange model. For this, we 

consider two types of the chains. 

3.1. Chain with Repeating One-Site Units 

For such type of chains (cf. Fig. 3, a), the attenuation factors are given 

by the expressions (3), (7) and (10) for the barrier, standard superex-
change and modified superexchange models, respectively. Let us take 

into account the fact that, subject to inequalities 

 2 2s s sE E t t     (14) 

and 

  
2

/ 1s sE t , (15) 

expression (10) has the following limit values, 

 
 

 
2

 if / 2 1,

 if / 2 1.

BR s

MD

MC s s

l E t

E t

 
  

 

 (16) 

 

Fig. 3. Geometric and energy position of the chain with repeating one-site (a) 
and two-site (b) structure units. On site energies and intersite couplings are 

denoted via Es, Ea(b) and ts, ta(b), respectively. Coupling to the electrodes are 

concentrated in the width parameters L and R. 
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It can be seen that the attenuation factors in both the Simmons barrier 

and the McConnell superexchange models are particular cases arising 

from the modified superexchange model. Thus, the inequalities (14) 

and (15) establish the limits of applicability of these models and their 

physical meaning. In particular, the McConnell model reflects the deep 

tunnelling process. As for the use of a rectangular barrier model, this 

makes sense only under specific condition (14), when the barrier height 

corresponds to gap 2
s s

E E t     (cf. definition in Eq. (14) and Fig. 2, 
c). In this case, the effective mass is determined by the expression 

* 2 2
/ 2 sm t l  containing the key superexchange parameter ts and the 

distance between neighbouring chain units l (cf. Figs. 2 and 3). 

3.2. Chain with Repeating Two-Site Units 

Fundamental difference between this chain and a chain with repeating 

single-site units is the presence of two types of localized frontier MOs 

having energies Ea and Eb, and two types of intra-chain couplings, ta 

and tb (cf. Fig. 3, b). For definiteness, we will assume that contact with 

the electrodes is through sites a. In this case, the modified superex-
change model leads to the following expression for the ohmic tunnel-
ling current, 

  0 chain2
,L R

F

a

I Vg T E N
E

 



. (17) 

 The decrease in current with an increase in the number of two-site 

chain units N  is presented in chain transmission function  

  
 

2

chain 2

( / 2)sinh
,

( 1) / 2sinh
FT E N

N


 

  
. (18) 

 The corresponding attenuation factor (per one two-site unit), 

  2
2ln 1      , (19) 

is controlled by the ratio 

 
2 2

0
2

a b a b

a b

E E t t

t t

   
    (20) 

that includes two pairs of key superexchange parameters: the zero-bias 

transmission gaps ( ) ( )a b F a bE E E    and the intersite couplings ta(b). It 

is easy to see that when converting a chain with two-site units into a 

chain with one-site units, i.e., at a b s
t t t  , a b s

E E E   and 

2 1N N   (cf. Figs. 3, a, b), we get the above results for the tunnel-
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ling current, i.e., the expressions (11) and (12). In particular, the rela-
tionship between attenuation factors looks like 2 MD   . 
 Consideration of limiting cases for the attenuation factor (19) shows 

that 

 
 

   

2

2

(2 / ) 2 if / 1,

4ln / if 1.

BR s eff eff

MC a b a b a b a b

l m E E t

E E t t E E t t

    
  

      

 (21) 

Here, BR
  and MC

  are the attenuation factors in the barrier and 

standard superexchange models. The parameters of the barrier model 

are defined as F H
E E E    and 

2 2
/ 2eff eff sm t l   where 

   
2 2

(1 2) 4H a b a b a bE E E E E t t      
  

 

and 

   
2 2

4eff a b a b a bt t t E E t t     

are the energy of the delocalized HOMO of the chain and the apparent 

interunit coupling, respectively. 
 Note that, for both types of chains, the attenuation factors N and  

have a similar analytical form. Therefore, presented in Fig. 4, the rela-
tionship between / (2 )s sE t  and N will be identical for the relationship 

between  and  . It can be seen from the Fig. 4 that the barrier model 

 

Fig. 4. The areas, in which barrier and standard superexchange models can 

work, are determined by the conditions 1.2
N

   and 3.5  , respectively. 

The modified superexchange model can be used to analyse the tunnelling cur-
rent in the region 0

N
   covering both of the above areas. 
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leads to results similar to those that follow from the modified superex-
change model, if 0 < < 1.2

N
 . 

 For standard superexchange models, a similar result is achieved at 

3.5N  . This is reflected in Fig. 5, where the exponential dependence 

of the normalized tunnelling current across the chain of repeating sin-
gle-site units, ( )N   , is shown. It can be seen (Fig. 5, a) that, for the 

chain, where 3sE   eV, 0.4
s
t   eV and, thus, 4

N
  , the standard 

superexchange model leads to the same results as the modified superex-

      
                         a                                                  b 

 
c 

Fig. 5. The exponential decrease in the tunnelling current through the molecular 

wire, described in terms of modified and standard superexchange models, as well 
as the barrier model. There is no match between the barrier and standard super-

exchange models. Calculation of the value  | 3
/ exp ( 3)NN

I I N


        , in 

which the attenuation factor N is given by the barrier model, Eq. (3), the stand-
ard superexchange model, Eq. (7) and the modified superexchange model, Eq. 
(10). 
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change model. This means that for bridging chains, where the unit-to-
unit couplings are weak, a deep tunnelling regime is realized. For pa-
rameters sE  4 eV, 1.9

s
t   eV, when 0.7

N
  , there is a coincidence 

of the results presented by the barrier and the modified superexchange 

models (Fig. 5, b). This is due to the fact that, for such key superex-
change parameters, the height of the apparent tunnelling barrier is ra-
ther small ( E   0.2 eV) and, therefore, the approximation (14) is true. 
At the same time, if sE  5 eV, 1.6

s
t   eV, then 3.12

N
  . With this 

attenuation factor, the results of both the barrier and standard superex-
change models differ from the results following from a more rigorous 

modified superexchange model (compare the Figs. 4 and 5, c). 

4. CONCLUSIONS 

In the present work, a comparison is made of the physical models used 

to analyse the ohmic current–voltage characteristics of molecular 

wires. Although simple analytical expressions obtained in the frame-
work of the Simmons barrier model or the McConnell superexchange 

model lead to an exponential decrease in the tunnelling current with 

increasing wire length, the application of each model, as we have 

shown, is limited by conditions (14) and (15). This can also be clearly 

seen from Figs. 4 and 5. A more complete description is given by the 

modified superexchange model, in which the restrictions on the rela-
tion between the key parameters s

E  and s
t  are removed. The absence 

of these restrictions allowed us to consider the limiting cases of the 

formation of a tunnel transmission and show that the barrier and 

standard superexchange models act as particular manifestations of 

tunnelling through bridging chains. In this case, the transmission 

simulates tunnelling through a rectangular barrier when the HOMO 

level of the chain is close to the Fermi level of the electrode (see condi-
tion (14)). Otherwise, that is realized with a weak coupling between the 

units (see condition (15)), the transmission looks like deep tunnelling. 

It is important to note that the results obtained are valid for a chain 

with one-site units as well as for more complex chains, which are com-
posed of two-site units. We also note the results related to the evalua-
tion of the pre-exponential factor c

I  (1), which characterizes the con-
tact of the electrodes with the molecular wire. The widely used simple 

Simmons barrier model cannot be used for this purpose, because ac-
cording to the Eq. (4), it leads to a nonphysical result in the limit 

0d  . The modified superexchange model shows that the tunnelling 

length dependence on N  covers the interior part of the wire, that is the 

minimum chain length is N1 so  min sd l l  (Figs. 2 and 3). Actually, 
however, the exponential dependence of the tunnelling current on N is 

determined by the attenuation function  ,
N

N   (see Eqs. (11) and 

(12)). For instance, for N1 one obtains    , expN NN N    for 
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N2 while, for N0.7, the same behaviour is observed at > 4N . 
This circumstance must be taken into account, when analysing the cur-
rent–voltage characteristics of molecular wires. 
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