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The Michaelis–Menten’s (MM) scheme serves as a basis for enzymatic kinet-
ics rather long since. Early attempts to search for internal mechanisms of 

regulation of enzyme activity rooted in the conformational lability and for 

corresponding deviations from the classical kinetics were practically ignored 

for a prolonged period. Nowadays, however, there is no lack of theoretical 
papers devoted to various MM-like schemes. This is mainly conditioned by 

implementation of the single-molecule (SM) methods into enzymology, and 

by similarities to heterogeneous (nano)catalysis with its direct analogue to 

the MM scheme called Langmuir–Hinshelwood’s model. It is expedient to as-
sess the interim achievements on this way. With this purpose, the most basic 

example, namely, reactions of monomeric enzymes with an only binding site, 
is considered. In this generic case, it is especially clear, which new possibili-
ties arise due to conformational fluctuations of the enzyme and how trans-
parent is their physical nature. The minimal MM-like schemes, which ex-
haust all the characteristic regulation phenomena caused by the presence of 

conformational channels (non-monotonic dependence of the velocity on the 

rate of substrate release, cooperativity, and substrate inhibition), are de-
scribed. An alternative approach based on our previously proposed concept of 

molecular self-organization to the enzyme functioning along the lines of 

nonequilibrium phase transitions is outlined. 

Схема Міхаеліса–Ментен (ММ) достатньо давно служить основою для фе-
рментативної кінетики. Ранні спроби пошуку внутрішніх механізмів ре-
ґуляції активности ферментів, що кореняться в їхній конформаційній ла-
більності, та відповідних відхилень від класичної кінетики були практич-
но ігноровані протягом тривалого періоду. Однак сьогодні не бракує теоре-
тичних робіт, присвячених різноманітним ММ-подібним схемам. Це, зде-
більшого, зумовлено впровадженням в ензимологію метод досліджень на 

рівні поодиноких молекул, а також подібностями до гетерогенної (на-
но)каталізи, де модель Ленґмюра–Гіншелвуда є прямим аналогом ММ-
схеми. Доцільно оцінити проміжні здобутки в цьому напрямі. З цією ме-
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тою розглядається найосновніший приклад — реакції мономерних ферме-
нтів з єдиним місцем зв'язування. Ó цьому наріжному випадку особливо 

ясно, які нові можливості виникають внаслідок конформаційних флюкту-
ацій ферменту і наскільки прозорою є їхня фізична природа. Описано мі-
німальні ММ-подібні схеми, які вичерпують всі характерні явища реґуля-
ції, спричинені наявністю конформаційних каналів (немонотонна залеж-
ність швидкости від швидкости вивільнення субстрату, кооперативність 

та субстратне інгібування). Окреслено альтернативний підхід до функціо-
нування ферментів в термінах нерівноважних фазових переходів, засно-
ваний на запропонованій нами раніше концепції молекулярної самоорга-
нізації. 

Key words: enzymatic reactions, Michaelis–Menten’s schemes, monomeric 

enzymes, conformational regulation, reaction velocity. 
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1. INTRODUCTION 

Enzymes are very complex biomacromolecules. Nevertheless, the 

methods of standard chemical kinetics based on the mass action law 

still dominate the description of enzymatic reactions. This approach is 

rooted in the historic work [1], with its centenary been widely celebrat-
ed [2]. The kinetic scheme proposed in [1] remains a starting point for 

studying any enzyme and proves its ubiquity in many other fields, in-
cluding nanocatalysis [3, 4]. After the advent of single molecule (SM) 

enzymology [5], the number of works on the validity of the Michaelis–
Menten’s (MM) scheme and its generalizations is permanently grow-
ing. It seems expedient to look closer at the results of this activity and 

to foresee its further development. The general trend can be traced 

with the pivotal example, precisely, reactions of a monomeric enzyme 

with an only binding site. Also, an alternative approach to the mecha-
nisms of enzyme functioning is proposed. 

2. THE CLASSIC MM SCHEME AND ITS SM VERSION 

The kinetic MM scheme implies conversion of substrate S to product P 

by enzyme E through the stage of reversible substrate binding with 

formation of the enzyme–substrate complex ES, and subsequent cata-
lytic stage of releasing the product and free enzyme capable of per-
forming the next identical turnover. In its original form, it reads 

   
a r

b
E S ES E P  (1) 



 NOTES TO THE CENTENARY OF MICHAELIS–MENTEN’S SCHEME 543 

with the corresponding kinetic equation 

     [ ] / [ ] [ ]d ES dt b r ES a E  (2) 

added with the condition of conservation of the total enzyme concen-
tration: [ ] [ ] [ ]

T
E E ES  . Here, a, b and r are rate constants of reac-

tions at the stage of binding, unbinding and product release, respec-
tively. As a rule, substrate concentration [S] is supposed to be main-
tained constant, so the rate constant a is proportional to [S], 1

[ ]a k S , 

and kinetics becomes linear. The prime characteristic of an enzymatic 

reaction is the velocity of product formation, / [ ]v dP dt r ES  . In 

the stationary case, Eq. (2) immediately yields 

  [ ][ ] / [ ]
t M

v r E S S K  , (3) 

where   1
/

M
K b r k   is Michaelis constant. The hyperbolic depend-

ence  [ ]v S  (3) is the main result of scheme (1) and primary test for 

studying any enzymatic reaction. For many years, its universality was 

not called into question. In mid-1960’s, however, the problem of regu-
lation of such reactions, in the first place, by means of modification of 

the  [ ]v S  dependence to a more pronounced one than that in Eq. (3), 

came to the fore. At those times, it was already known about ‘coopera-
tivity’ of binding oxygen by haemoglobin, with its ‘sigmoid’ (i.e., trig-
ger-like) saturation curve, as distinct from hyperbolic for myoglobin. 
Haemoglobin differs from the latter in its oligomeric structure (con-
sists of four sub-units, each with its own binding site). Consequently, 

the first kinetic models of cooperativity contained several active cen-
tres, too. In addition, however, it seemed obligatory to introduce dif-
ferent conformational states of sub-units [6]. And that has turned out 

to be a decisive step, since (as it was firstly noted in one-paged paper 

[7]) cooperativity could be imitated even by a monomeric enzyme with 

a single binding site, if only to suggest (i) the presence of two confor-
mations, 1

E  and 2
E , of free enzyme, differing in affinity to the sub-

strate, and (ii) a slow conformational transition between 2
E  and 1

E . 

For a prolonged period, this idea was beyond the mainstream, and the 

MM-scheme position with respect to monomeric enzymes remained 

firm until the first single enzyme experiments. 
 The latter make it possible to obtain stochastic ‘trajectories’ of du-
rations of the enzyme residence in particular reaction states. Statisti-
cal processing of such trajectories yields, in particular, the probability 

distribution function ( )f t  of the ‘first passage time’, i.e., the time from 

the beginning of substrate binding to the product release. Then, model-
ling scheme (1) is based on equations for probabilities ( )

E
P t , ( )

ES
P t  in-

stead of concentrations [ ], [ ]E ES : 

 / , / ( )E E ES ES E ESdP dt aP bP dP dt aP b r P       (4) 
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with initial conditions (0) 1, (0) 0
E ES

P P  . It should be stressed 

that the first equation of set (4), as distinct from Eq. (2), does not con-

tain (because of the very sense of ( )f t ) the term ES
rP  of the enzyme re-

turn to its free state, so that the condition ( ) ( ) 1
E ES

P t P t   holds for 

0t   only.1 Obviously, ( ) ( )
ES

f t rP t , and easy solving set (4) and cal-

culating the mean first passage time 
0

( )t tf t dt


   yield 

 1/ / ( )t ra a b r   . (5) 

 Comparing Eq. (5) with Eq. (3) and remembering that 1
[ ]a k S , one 

can see their identity, that is,  / 1/
T

v E t  (so called single mole-
cule Michaelis–Menten’s equation [8]). 
 Although its validity has been proved experimentally for a particu-
lar enzyme [9], even the first data of SM spectroscopy of enzymatic re-
actions showed considerable deviations of the dwell time distributions 

and corresponding correlation functions from exponential ones [5]. 

That was not consistent with the classic MM scheme. Yet, despite a 

much higher level of experiment, to explain these data, the same linear 

kinetics is still applied to various versions of the MM scheme split into 

several conformational channels. Currently, this is the main trend of 

numerous papers ([8–14], to cite a few), often overloaded with bulky 

linear algebra or unnecessary, too sophisticated (sometimes, even con-
tradictory) substantiations of kinetic equations. Meanwhile, all prin-
cipal effects of deviations from MM’s behaviour can be illustrated with 

minimal two-channel schemes (Fig. 1). Actually, there are three such 

effects. 

2. EFFECTS OF CONFORMATIONAL SPLITTING 

Scheme in Fig. 1, a proposed in [15] illustrates a counter-intuitive ef-
fect of a non-monotonic dependence of the reaction velocity on rate 

constant b of ‘unproductive’ substrate unbinding, provided that cata-
lytic rate constants R and r in the channels are markedly different. 
Here, the possibility of the enzyme return from less active state 2

ES  to 

initial state E with a chance to proceed via more active state 1
ES  may 

not slow down but accelerate the catalysis (see Fig. 2, a). It is easy to 

derive a relationship between [S] and difference ( )R r  necessary for 

the effect (first noted 100 years after introduction of the MM scheme). 
 Scheme in Fig. 1, b was proposed in [16] as a simplified version of 

Rabin’s scheme [7] of cooperativity of a monomeric enzyme. The effect 

                                           
1 This is often ignored in current literature, leading to confusions in derivations. 
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requires the presence of two conformational states of the free enzyme, 
with one of them  1

E  being more stable while the other  2
E  having 

better affinity (Aa). If the conformational transition 2 1
E E  is 

slow, then, with [S] increasing, the enzyme stays longer in more active 

state 2
E , having no time to relax to 1

E  before the next substrate ar-
rives. It is the physical reason that initiates cooperativity (flexion of 

curve  [ ]v S , as distinct from MM’s hyperbola), so smartly captured 

by Rabin. True, in models with discrete conformation, this flexion 

shows up rather poorly (see an example in Fig. 2, b) due to algebraic 

structure of the dependence  [ ]v S , which implies a ratio of two poly-
nomials of rather low power. 
 Scheme in Fig. 1, c, apart from the possibilities of the two previous 

schemes, also includes the substrate inhibition effect. The latter shows 

up, if catalytic rates R and r are markedly different. At certain values 

of the scheme parameters, the role of the less active channel can grow 

with [S] increasing. This suppresses the cooperativity effect (see Fig. 
2, c for an example). 
 All further extensions of such schemes (like increasing the number 

of channels or intermediate states) do not reveal any new effects of 

conformational regulation and only complicate the analysis by intro-
ducing too many parameters which could never be determined experi-
mentally. Resuming this still dominant trend, we note the following. 
 The MM-like schemes with discrete conformation channels analysed 

within linear equations with constant coefficients can be helpful in 

qualitative elucidation of conformational regulation, at least as long as 

they are kept simple. Indeed, deriving the reaction velocity from sta-
tionary solutions of Eq. (2)-like equations is trivial. Not much harder 

is finding the mean first passage time t  in SM-versions where 1/ t  

plays the reaction velocity role. In these cases, it is sufficient to solve 

the corresponding non-stationary problem like (4) in Laplace trans-
forms only2, since all the moments 

mt  can be found simply as 

 
0

( 1) ( ) / |
m m

st df s ds . 
 As the SM MM equation  / 1/

T
v E t  remains valid in the pres-

ence of different conformational channels, the SM versions do not re-
veal any principally new regulation mechanisms except the mentioned 

above, derived in ensemble versions. Overall, the whole trend seems 

methodologically exhausted, since attempts to refresh it by the SM ap-
proach would be most likely reduced to re-discovering the already 

known effects in more complicated and even contradictory ways, as it 

currently takes place. 
 In addition, the discrete schemes have inherent limitations not con-
sistent with real protein reaction kinetics: the rate ‘constants’ are in 

                                           
2 Of course, the initial population distribution (0)

iEP  should be imposed correctly, 
i.e., proportionally to stationary restoring fluxes st

i ir ES 
 

 to these sub-states within 
the channels. 
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fact rarely constant and can influence each other, the kinetics is often 

essentially non-exponential, etc. The approach presented in the next 

section avoids these limitations and provides a new insight into for-
mation of functional regimes of enzymatic reactions. 

3. SELF-ORGANIZING REGIMES 

Actually, they follow from quite natural considerations on substrate-
conformational interactions [17–19]. Let us suppose that the enzyme 

structure changes caused by substrate binding/unbinding are charac-
terized by generalized structural coordinate x with its dynamics being 

much slower than that of the changes in reaction states. Let structural 
potentials 0 1

( ), ( )V x V x  correspond to states E, ES, respectively. The 

 
                         a                     b                         c 

Fig. 1. Generic schemes for the effects caused by introducing different con-
formational channels into the classical MM scheme (see the text). 

 
                  a                                 b                                c 

Fig. 2. (a) Non-monotonic v(b) in the scheme in Fig. 1, a. a10. Curve 1: 
Rr3; curve 2: R10, r1. (b) Weak cooperativity in the scheme in Fig. 1, 

b with the return after the catalytic stage to sub-state E2. The flexion of v([S]) 
is negligible unless one looks at the concave in the inset for extremely small 
[S]. Here, 1, k1a/[S]0.1, k2A/[S]1, b10, R100. (c) Substrate 

inhibition in the scheme in Fig. 1, c. 10, 1 k1A/[S]10, k2A/[S] 

1, b10, B1, r1, R10. 
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strength of substrate-conformational interaction can be characterized, 

for example, by shift xm of the potential minimum position, like 

  2

0
( ) 2V x x   and      

2

1
( ) 2 mV x x x  for harmonic potentials. 

Obviously, the rate constants of Scheme (1) become dependent on x. In 

turn, dynamics of the latter is determined by dichotomous switching of 

force Ft between its values 0
( )V x , 1

( )V x . The master equation for 

probabilities  0,1
|t x  of realization of these values has the form of a 

balance equation with x-dependent rates, thereby ensuring the feed-
back and nonlinearity in the system. 
 Formulated in such a way, the stochastic problem added with a ther-
mal white noise can be reduced to a Fokker–Planck equation for struc-
tural distribution function ( , )P x t  with effective potential ( )

effV x , and 

the shape of the latter is determined by x-dependent rates. For them, 
the following assumption frequently used in kinetics of biochemical re-
actions can be adopted: 1

[ ]a k S ,  1
exp ( )Bk b G k T  , where G is 

the free energy lowering (increase in affinity) due to structural fit to 

the substrate. The quantity ( )BG k T  can be taken as a generalized 

structural coordinate. Then, x-dependent Michaelis’ constant 

1 1
( ) ( ) / ( ) /

M
K x b x k r x k  , which enters the V

eff-defining equation 

    0 1 0
/ / / / [ ] / [ ] ( )

eff

M
dV dx dV dx dV dx dV dx S S K x    , (6) 

is simply ( ) exp( )
M

K x x  , if ( ) ( )r x b x . Analysis shows [20] that, 

with [S] growing from 0 to , the effective potential, changing from 

0
( )V x  to 1

( )V x , under sufficient strength of substrate-conformational 
interaction (here, if xm exceeds its critical value хm4), acquires a two-
well shape in a certain interval of [S]. This corresponds to bistability of 

the steady-state reaction regimes (in particular, to markedly different 

values of  (1,2)

s
b x , where 

(1,2)

s
x  are positions of ( )

effV x ’s minima in the 

bistability window). The surface  ,[ ]
s m

x x S  provides an example of a 

fold-type catastrophe with the projection of the fold onto plane 

 ,[ ]
m

x S  having the form of a wedge with a critical point at its cusp 

(Fig. 3). The whole picture is typical for a nonequilibrium phase transi-
tion of the 1

st
 kind and that of the 2

nd
 kind in the critical point. 

 Calculations of the steady-state ES-complex population 
st

1
N ([S]) 

show considerably more pronounced sigmoidicity than that within the 

discrete schemes (see Fig. 4, a). If catalytic rate r(x) is weakly depend-
ent on x, then, curve v([S]) has the same pronouncedly ‘cooperative’ 

shape. On the other hand, specifying r(x) as, for example, a Markus-
type rate, 

2

0
( ) exp ( ) / (4 )r rr x r x       , where / ( )r r BE k T  , and 

Er is the reorganization energy at the product release stage, one can 

arrive at the possibility of substrate inhibition (see Fig. 4, b for an ex-
ample). 
 Actually, the expounded considerations represent an application of 

our molecular self-organization concept (see [20] and references there-
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in) to the MM scheme. To the best of our knowledge, this concept is the 

first attempt of implementing synergetic phenomena at the level of 

molecules. 

 
                              a                                          b 

Fig. 3. Left: The surface xS with a fold that corresponds to the bistability area. 
The rod, originating from point    , [ ] 5.3, 0.073

m
x S   within the wedge, 

penetrates the fold at three points, where the middle s
x  corresponds to the 

unstable state. Right: Projection of the fold on plane  ,[ ]
m

x S  (a wedge with a 

cusp), representing the system phase diagram. At fixed 4
m

x   and with [S] 
growing, one enters and then leaves the bistability area. The middle line is an 

analogue of the phase coexistence curve for the 1
st

 kind phase transition. It 

ends in the critical point    * * 2
, 4,

m
x S e     [20]. 

 
                             a                                             b 

Fig. 4. Left: (1–4) Dependence of the enzyme–substrate complex population on 

substrate concentration for different values of parameter 4
m

x   (1), 5 (2), 6 

(3), 7 (4). To the accuracy of factor r, it coincides with that of reaction velocity 

 [ ]v S . (5) The same for the case of 7
m

x   and x-dependent ( )r x  with 3,
r
   

0 1
/ 0.003r k  ). Right: Dependence of the reaction velocity on substrate con-

centration for different values of parameters of catalytic rate constant ( )r x . 

0 1
/ 0.006r k  . (1) 3,

r
  2

m
x  ; (2) 5,

r
  7

m
x  ; (3) 3,

r
   7

m
x  . 
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 Characteristic manifestations of the corresponding nonequilibrium 

phase transitions in terms typical for SM experiments are described an-
alytically and confirmed by computer simulations [21]. 

4. CONCLUDING REMARKS 

Within the discrete linear schemes, their SM versions do not lead to 

any principally new mechanisms and effects of conformational regula-
tion, as compared to those within the ensemble versions. In a more ade-
quate and natural way, such effects emerge due to the feedback be-
tween continuous conformational fluctuations and enzymatic reaction 

stages. Then, the enzyme functional regimes result from analogues of 

nonequilibrium phase transitions at the molecule level. 
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