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The Michaelis—Menten’s (MM) scheme serves as a basis for enzymatic kinet-
ics rather long since. Early attempts to search for internal mechanisms of
regulation of enzyme activity rooted in the conformational lability and for
corresponding deviations from the classical kinetics were practically ignored
for a prolonged period. Nowadays, however, there is no lack of theoretical
papers devoted to various MM-like schemes. This is mainly conditioned by
implementation of the single-molecule (SM) methods into enzymology, and
by similarities to heterogeneous (nano)catalysis with its direct analogue to
the MM scheme called Langmuir—Hinshelwood’s model. It is expedient to as-
sess the interim achievements on this way. With this purpose, the most basic
example, namely, reactions of monomeric enzymes with an only binding site,
is considered. In this generic case, it is especially clear, which new possibili-
ties arise due to conformational fluctuations of the enzyme and how trans-
parent is their physical nature. The minimal MM-like schemes, which ex-
haust all the characteristic regulation phenomena caused by the presence of
conformational channels (non-monotonic dependence of the velocity on the
rate of substrate release, cooperativity, and substrate inhibition), are de-
scribed. An alternative approach based on our previously proposed concept of
molecular self-organization to the enzyme functioning along the lines of
nonequilibrium phase transitions is outlined.

Cxema Mixaemica—Meunten (MM) qocTaTHBO JABHO CIYKUTH OCHOBOIO IS (pe-
pPMeHTATHBHOI KiHeTuKu. Pamui crrpoOu MOIIYKY BHYTPIIIHIX MexaHisMiB pe-
I'yJIsaIii aKk TuBHOCTU (DePMEHTIB, IO KOPEHATHCS B IXHilT KoH(popMatiiiuii Jya-
6iJIbHOCTI, Ta BiATIOBIAHMX BiAXWMJI€HD Bif KJIACHUUYHOI KiHeTHUKY Oy MPaKTHUU-
HO irHOpOBAaHi IPOTATOM TpUBaJIOTO mepioay. OnHaK CLOTOMHI He OpaKye Teope-
TUUYHUX POOIT, mpucBAYeHUX pisHomaHiTHUM MM-noxiouum cxemam. Ile, 3xe-
GiJIBIIIOT0, 3yMOBJIEHO BIPOBAIMKEHHAM B €H3MMOJIOTiI0 METOM AOCIiAMKeHDb Ha
PiBHi TTOOAMHOKHWX MOJIEKYJI, a TaKOXK MOMiOHOCTAMU OO TeTeporeHHOi (Ha-
HO)KaTaxisu, me Mmomenb Jleurmiopa—IlimmienByna € mpamum aHamorom MM-
cxemu. JIOIiIbHO OIiHUTH MTPOMiKHiI 300YTKM B IIbOMY HampaMi. 3 Ili€l0 me-
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TOIO PO3TJIALAETHCA HAMOCHOBHIIIINY MPUKJIA — pPeakiiii MoHOMepHUuX (epme-
HTiB 3 €UHNM MiCIleM 3B sS3yBaHHA. Y IIEOMY Hapi»KHOMY BHUIIaAKY OCOGJIMBO
fICHO, K1 HOBI MOKJINBOCTiI BUHUKAIOTh BHACIITOK KOH(MOPMALINHUX (DIIOKTY-
ariit pepMeHTy i HaCKiMIbLKM TMPO30poIo € ixuaA ¢isuyHa mpupoma. Omucano mi-
HimMansHi MM-moni6Hi cxeMu, AKi BUUepOyIOTh BCi XapaKTepHi SBUIA peryJis-
1ii, cipuuMHeHi HaABHiCTIO KOHGOPMAIIHHNX KaHAIiB (HEMOHOTOHHA 3aJIeMK-
HiCTh HMIBUAKOCTHU BiJ IIBUAKOCTU BUBiJIbHEHHS CyOCTpaTy, KOOIEepPATHUBHICTH
Ta cyocTpaTHe iHribyBanHua). OKpecIeHO aJbTepHATUBHUN TifxXin go GyHKIio-
HYBaHHA (DEPMEHTIiB B TepMiHaX HePiBHOBaKHUX (D)a30BUX IEPEXOJiB, 3aCHO-
BaHUY Ha 3aIIPOIIOHOBAHINl HAMM paHillle KOHIIEMIil MOJIEKYJIAPHOI camoopra-
Hisarii.

Key words: enzymatic reactions, Michaelis—Menten’s schemes, monomeric
enzymes, conformational regulation, reaction velocity.

KarouoBi ciaoBa: ¢pepmenTaTuBHI peaxiiii, cxemu Mixaemica—MeHTeH, MOHO-
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1. INTRODUCTION

Enzymes are very complex biomacromolecules. Nevertheless, the
methods of standard chemical kinetics based on the mass action law
still dominate the description of enzymatic reactions. This approach is
rooted in the historic work [1], with its centenary been widely celebrat-
ed [2]. The kinetic scheme proposed in [1] remains a starting point for
studying any enzyme and proves its ubiquity in many other fields, in-
cluding nanocatalysis [3, 4]. After the advent of single molecule (SM)
enzymology [5], the number of works on the validity of the Michaelis—
Menten’s (MM) scheme and its generalizations is permanently grow-
ing. It seems expedient to look closer at the results of this activity and
to foresee its further development. The general trend can be traced
with the pivotal example, precisely, reactions of a monomeric enzyme
with an only binding site. Also, an alternative approach to the mecha-
nisms of enzyme functioning is proposed.

2. THE CLASSIC MM SCHEME AND ITS SM VERSION

The kinetic MM scheme implies conversion of substrate S to product P
by enzyme E through the stage of reversible substrate binding with
formation of the enzyme—substrate complex ES, and subsequent cata-
lytic stage of releasing the product and free enzyme capable of per-
forming the next identical turnover. In its original form, it reads

E+S$Es—f>E+P (1)
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with the corresponding kinetic equation
d[ES]/ dt = —(b + r) [ES]+ a[E] (2)

added with the condition of conservation of the total enzyme concen-
tration: [E,] =[E]+[ES]. Here, a, b and r are rate constants of reac-
tions at the stage of binding, unbinding and product release, respec-
tively. As a rule, substrate concentration [S] is supposed to be main-
tained constant, so the rate constant a is proportional to [S], a = £ [S],
and kinetics becomes linear. The prime characteristic of an enzymatic
reaction is the velocity of product formation, v =dP /dt =r[ES]. In
the stationary case, Eq. (2) immediately yields

U:r[Et][S]/([S]+KM)’ (3)

where K,, = (b + r) / k, is Michaelis constant. The hyperbolic depend-
ence v([S]) (3) is the main result of scheme (1) and primary test for
studying any enzymatic reaction. For many years, its universality was
not called into question. In mid-1960’s, however, the problem of regu-
lation of such reactions, in the first place, by means of modification of
the v ([S]) dependence to a more pronounced one than that in Eq. (3),
came to the fore. At those times, it was already known about ‘coopera-
tivity’ of binding oxygen by haemoglobin, with its ‘sigmoid’ (i.e., trig-
ger-like) saturation curve, as distinct from hyperbolic for myoglobin.
Haemoglobin differs from the latter in its oligomeric structure (con-
sists of four sub-units, each with its own binding site). Consequently,
the first kinetic models of cooperativity contained several active cen-
tres, too. In addition, however, it seemed obligatory to introduce dif-
ferent conformational states of sub-units [6]. And that has turned out
to be a decisive step, since (as it was firstly noted in one-paged paper
[7] cooperativity could be imitated even by a monomeric enzyme with
a single binding site, if only to suggest (i) the presence of two confor-
mations, E, and E,, of free enzyme, differing in affinity to the sub-
strate, and (ii) a slow conformational transition between E, and E, .
For a prolonged period, this idea was beyond the mainstream, and the
MM-scheme position with respect to monomeric enzymes remained
firm until the first single enzyme experiments.

The latter make it possible to obtain stochastic ‘trajectories’ of du-
rations of the enzyme residence in particular reaction states. Statisti-
cal processing of such trajectories yields, in particular, the probability
distribution function f(¢) of the ‘first passage time’, i.e., the time from
the beginning of substrate binding to the product release. Then, model-
ling scheme (1) is based on equations for probabilities P,(t), P,4(¢) in-
stead of concentrations [E], [ES]:

dP, / dt = —aP, +bP,y, dP,, /dt = aP, —(b+r)Py (4)
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with initial conditions P,(0)=1, P, (0)=0. It should be stressed

that the first equation of set (4), as distinct from Eq. (2), does not con-
tain (because of the very sense of f(t)) the term rP,, of the enzyme re-

turn to its free state, so that the condition P,(t) + P,4(¢) =1 holds for
¢t =0 only." Obviously, f(¢) = rP,(t) , and easy solving set (4) and cal-

culating the mean first passage time (t) = J:O tf(t)dt yield

1/<t>=ra/(a+b+r). 5)

Comparing Eq. (5) with Eq. (3) and remembering that a = £, [S], one
can see their identity, that is, v/ [ET] =1/ <t> (so called single mole-
cule Michaelis—Menten’s equation [8]).

Although its validity has been proved experimentally for a particu-
lar enzyme [9], even the first data of SM spectroscopy of enzymatic re-
actions showed considerable deviations of the dwell time distributions
and corresponding correlation functions from exponential ones [5].
That was not consistent with the classic MM scheme. Yet, despite a
much higher level of experiment, to explain these data, the same linear
kinetics is still applied to various versions of the MM scheme split into
several conformational channels. Currently, this is the main trend of
numerous papers ([8—14], to cite a few), often overloaded with bulky
linear algebra or unnecessary, too sophisticated (sometimes, even con-
tradictory) substantiations of kinetic equations. Meanwhile, all prin-
cipal effects of deviations from MM’s behaviour can be illustrated with
minimal two-channel schemes (Fig. 1). Actually, there are three such
effects.

2. EFFECTS OF CONFORMATIONAL SPLITTING

Scheme in Fig. 1, a proposed in [15] illustrates a counter-intuitive ef-
fect of a non-monotonic dependence of the reaction velocity on rate
constant b of ‘unproductive’ substrate unbinding, provided that cata-
lytic rate constants R and r in the channels are markedly different.
Here, the possibility of the enzyme return from less active state ES, to
initial state E with a chance to proceed via more active state ES, may
not slow down but accelerate the catalysis (see Fig. 2, a). It is easy to
derive a relationship between [S] and difference (R —r) necessary for
the effect (first noted 100 years after introduction of the MM scheme).

Scheme in Fig. 1, b was proposed in [16] as a simplified version of
Rabin’s scheme [7] of cooperativity of a monomeric enzyme. The effect

! This is often ignored in current literature, leading to confusions in derivations.
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requires the presence of two conformational states of the free enzyme,
with one of them (E,) being more stable while the other (E,) having
better affinity (A >a). If the conformational transition E, — E| is
slow, then, with [S] increasing, the enzyme stays longer in more active
state E,, having no time to relax to E, before the next substrate ar-
rives. It is the physical reason that initiates cooperativity (flexion of
curve v([S]) , as distinct from MM’s hyperbola), so smartly captured
by Rabin. True, in models with discrete conformation, this flexion
shows up rather poorly (see an example in Fig. 2, b) due to algebraic
structure of the dependence v ([S]) , which implies a ratio of two poly-
nomials of rather low power.

Scheme in Fig. 1, ¢, apart from the possibilities of the two previous
schemes, also includes the substrate inhibition effect. The latter shows
up, if catalytic rates R and r are markedly different. At certain values
of the scheme parameters, the role of the less active channel can grow
with [S] increasing. This suppresses the cooperativity effect (see Fig.
2, ¢ for an example).

All further extensions of such schemes (like increasing the number
of channels or intermediate states) do not reveal any new effects of
conformational regulation and only complicate the analysis by intro-
ducing too many parameters which could never be determined experi-
mentally. Resuming this still dominant trend, we note the following.

The MM-like schemes with discrete conformation channels analysed
within linear equations with constant coefficients can be helpful in
qualitative elucidation of conformational regulation, at least as long as
they are kept simple. Indeed, deriving the reaction velocity from sta-
tionary solutions of Eq. (2)-like equations is trivial. Not much harder
is finding the mean first passage time <t> in SM-versions where 1/ <t>
plays the reaction velocity role. In these cases, it is sufficient to solve
the corresponding non-stationary problem like (4) in Laplace trans-
forms only®, since all the moments (t") can be found simply as
<t"2 = (-1)"df(s) / ds|,_, -

s the SM MM equation v / [ET] =1/ <t> remains valid in the pres-
ence of different conformational channels, the SM versions do not re-
veal any principally new regulation mechanisms except the mentioned
above, derived in ensemble versions. Overall, the whole trend seems
methodologically exhausted, since attempts to refresh it by the SM ap-
proach would be most likely reduced to re-discovering the already
known effects in more complicated and even contradictory ways, as it
currently takes place.

In addition, the discrete schemes have inherent limitations not con-
sistent with real protein reaction kinetics: the rate ‘constants’ are in

2 Of course, the initial population distribution P; (0) should be imposed correctly,
i.e., proportionally to stationary restoring fluxes r, {ES;“} to these sub-states within
the channels.
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Fig. 1. Generic schemes for the effects caused by introducing different con-
formational channels into the classical MM scheme (see the text).
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Fig. 2. (a) Non-monotonic v(b) in the scheme in Fig. 1, a. a=10. Curve I:
R=r=3;curve 2: R=10, r=1. (b) Weak cooperativity in the scheme in Fig. 1,
b with the return after the catalytic stage to sub-state E,. The flexion of v([S])
is negligible unless one looks at the concave in the inset for extremely small
[S]. Here, aa=1, k;=a/[S]=0.1, k,=A/[S]=1, b=10, R=100. (c) Substrate
inhibition in the scheme in Fig.1,c. a =10, =1k, =A/[S]=10, k,=A/[S]=
=1,b=10,B=1,r=1,R=10.

fact rarely constant and can influence each other, the kinetics is often
essentially non-exponential, etc. The approach presented in the next
section avoids these limitations and provides a new insight into for-
mation of functional regimes of enzymatic reactions.

3. SELF-ORGANIZING REGIMES

Actually, they follow from quite natural considerations on substrate-
conformational interactions [17—19]. Let us suppose that the enzyme
structure changes caused by substrate binding/unbinding are charac-
terized by generalized structural coordinate x with its dynamics being
much slower than that of the changes in reaction states. Let structural
potentials V(x), V,(x) correspond to states E, ES, respectively. The
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strength of substrate-conformational interaction can be characterized,
for example, by shift x, of the potential minimum position, like
Vy(x) = (y/2)x* and Vj(x)=(y/2)(x—x,) for harmonic potentials.
Obviously, the rate constants of Scheme (1) become dependent on x. In
turn, dynamics of the latter is determined by dichotomous switching of
force F, between its values -V, (x), —V/(x). The master equation for
probabilities p,, (t | x) of realization of these values has the form of a
balance equation with x-dependent rates, thereby ensuring the feed-
back and nonlinearity in the system.

Formulated in such a way, the stochastic problem added with a ther-
mal white noise can be reduced to a Fokker—Planck equation for struc-
tural distribution function P(x,t) with effective potential V*/(x), and
the shape of the latter is determined by x-dependent rates. For them,
the following assumption frequently used in kinetics of biochemical re-
actions can be adopted: a = k,[S], k /b = exp(—AG/(k,T)) , where AG is
the free energy lowering (increase in affinity) due to structural fit to
the substrate. The quantity —AG/(k,T) can be taken as a generalized
structural coordinate. Then, x-dependent Michaelis’ constant
K,,(x) = b(x) / k, +r(x) / k, , which enters the V*/-defining equation

AV /dx = dv, / dx +(dV, / dx —dV, / dx)[S]/ ([S]+ K, (%)) , (6)

is simply K, (x) = exp(-x), if r(x) < b(x) . Analysis shows [20] that,
with [S] growing from 0 to «, the effective potential, changing from
V,(x) to V,(x), under sufficient strength of substrate-conformational
interaction (here, if x,, exceeds its critical value x,, = 4), acquires a two-
well shape in a certain interval of [S]. This corresponds to bistability of
the steady-state reaction regimes (in particular, to markedly different
values of b(xgl'z)) , where x"? are positions of V*’(x)’s minima in the
bistability window). The surface x, (xm,[S]) provides an example of a
fold-type catastrophe with the projection of the fold onto plane
(xm,[S]) having the form of a wedge with a critical point at its cusp
(Fig. 3). The whole picture is typical for a nonequilibrium phase transi-
tion of the 1* kind and that of the 2" kind in the critical point.

Calculations of the steady-state ES-complex population N:*([S])
show considerably more pronounced sigmoidicity than that within the
discrete schemes (see Fig. 4, a). If catalytic rate r(x) is weakly depend-
ent on x, then, curve v([S]) has the same pronouncedly ‘cooperative’
shape. On the other hand, specifying r(x) as, for example, a Markus-
type rate, r(x) =r, exp[—(sr - x)? /(4&3,)} , where ¢, = E_/(k,T), and
E, is the reorganization energy at the product release stage, one can
arrive at the possibility of substrate inhibition (see Fig. 4, b for an ex-
ample).

Actually, the expounded considerations represent an application of
our molecular self-organization concept (see [20] and references there-
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6 3 x
b

Fig. 3. Left: The surface xg with a fold that corresponds to the bistability area.
The rod, originating from point (x,,, [S]) =(5.3, 0.073) within the wedge,
penetrates the fold at three points, where the middle x, corresponds to the
unstable state. Right: Projection of the fold on plane (xm, [S]) (awedge with a
cusp), representing the system phase diagram. At fixed x, >4 and with [S]
growing, one enters and then leaves the bistability area. The middle line is an
analogue of the phase coexistence curve for the 1 kind phase transition. It
ends in the critical point (x,, S*J = (4, e’z) [20].

NHIST) v([S])
1.0 67
0.8 ’ ?
81 4
5/ /% .
0.6 2 r,/k=0.006
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24
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- 3
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Fig. 4. Left: (1—4) Dependence of the enzyme—substrate complex population on
substrate concentration for different values of parameter x, =4 (1), 5 (2), 6
(3), 7 (4). To the accuracy of factor r, it coincides with that of reaction velocity
v([S]) . (5) The same for the case of x, =7 and x-dependent r(x) with g, =3,
r, / k =0.003). Right: Dependence of the reaction velocity on substrate con-
centration for different values of parameters of catalytic rate constant r(x).
r,/k =0006.(1)e =3,x,=2;(2)¢,=5x,=7;(3e. =3, x,=7.

in) to the MM scheme. To the best of our knowledge, this concept is the
first attempt of implementing synergetic phenomena at the level of
molecules.
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Characteristic manifestations of the corresponding nonequilibrium
phase transitions in terms typical for SM experiments are described an-
alytically and confirmed by computer simulations [21].

4. CONCLUDING REMARKS

Within the discrete linear schemes, their SM versions do not lead to
any principally new mechanisms and effects of conformational regula-
tion, as compared to those within the ensemble versions. In a more ade-
quate and natural way, such effects emerge due to the feedback be-
tween continuous conformational fluctuations and enzymatic reaction
stages. Then, the enzyme functional regimes result from analogues of
nonequilibrium phase transitions at the molecule level.
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