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As found, within the band gap of the quantum dot of zinc selenide, a zone 
of exciton states located at the bottom of the conduction band appears. As 
shown, a decrease in the band gap width for this nanosystem is condi-
tioned by transition of the electron from quantum-dimensional level with-
in the valence band of the quantum dot to the levels of the zone of exciton 
states. The dependence of the energy of a ground state of an exciton on 
the radius of quantum dot is obtained using a modified method of the ef-
fective mass. 

Було встановлено, що в межах ширини забороненої зони квантової то-
чки з селеніду цинку з'являється зона екситонних станів, розташована 
в нижній частині зони провідности. Було показано, що зменшення ши-
рини забороненої зони цієї наносистеми зумовлене переходом електро-
на з квантово-розмірного рівня у валентній зоні квантової точки до рі-
внів зони екситонних станів. Залежність енергії основного стану екси-
тона від радіюса квантової точки було одержано з використанням мо-
дифікованої методи ефективної маси. 

Было установлено, что в пределах ширины запрещённой зоны кванто-
вой точки из селенида цинка появляется зона экситонных состояний, 
расположенная в нижней части зоны проводимости. Было показано, 
что уменьшение ширины запрещённой зоны этой наносистемы обу-
словлено переходом электрона из квантово-размерного уровня в ва-
лентной зоне квантовой точки к уровням зоны экситонных состояний. 
Зависимость энергии основного состояния экситона от радиуса кванто-
вой точки была получена с использованием модифицированного метода 
эффективной массы. 
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1. INTRODUCTION 

The solid-state technology developments lead to the fabrication of 
the quasi-zero-dimensional nanostructures, which are a semiconduc-
tor quantum dots (QDs) of spherical shape with a radius a 1–10 
nm grown in the transparent dielectric (or semiconductor) matrix 
[1–4]. Such linear dimensions of the QD are comparable with the de 
Broglie wavelength of an electron and a hole, or (and) their Bohr 
radius. 
 The mentioned characteristics lead to the fact that the phenome-
non of spatial size quantization of charge carriers plays an im-
portant role in the optical and electrooptical processes in these 
nanosystems [5–12]. 
 Optical and electrooptical properties of those quasi-zero-
dimensional nanostructures are largely determined by the energy 
spectrum of a spatially bounded electron-hole pair (exciton) [1–11]. 
The energy spectrum of charge carriers in the QD, since the size a 
is of the order of the Bohr radius of the electron ae or the hole ah 
and less, is fully discrete. Therefore, those QDs are called ‘super-
atoms’ [1, 3, 4, 11]. In these conditions, the effect of a spherical 
surface of interface (QD–dielectric matrix) can cause the size quan-
tization of the energy spectrum of electron and hole in the QD, 
which is associated with a purely spatial limitation of field quanti-
zation, and polarization interaction of charge carriers with the sur-
face of the QD [1, 3–11]. 
 A novel modified method of the effective mass approximation 
was recently suggested [5] to describe the exciton energy spectrum 
in semiconductor QDs with radii 0

ex
a a  ( 0

ex
a —the Bohr radius of 

exciton in the semiconductor material of the bulk of QDs.). As 
shown, within the framework of the QD model, in which QD was 
simulated by limitlessly deep potential well, the effective mass ap-
proximation is liable in description of exciton with QD with radius 
a comparable with the Bohr radius of exciton 0

ex
a , considering an 

adduced effective mass of exciton ( )a    as a function of QD ra-
dius a. 
 The optical properties of the samples containing of QDs of zinc 
selenide placed in air was reported earlier [12]. The average radii a  
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of such QDs were not exceeding 21 nm. At low concentrations of 
QDs, when the optical properties of samples are mainly determined 
by the optical properties of the single QD in the air, the decrease of 
the band gap (Eg2.61–2.68 eV) was detected in comparison with 
the band gap for bulk single crystal of zinc selenide (Eg2.7 eV). 
The mechanism of such a decreasing in the band gap of zinc sele-
nide QDs is not clear yet. 
 Therefore, in this paper, we show that a decrease in the band gap 
within such nanosystem detected under the experimental conditions 
[12] was stipulated by transition of an electron from the quantum-
level located in the valence band of the QD on the level of the exci-
ton state zone. The energy of the base state of the exciton, which 
are moving in volume of QDs of zinc selenide, as a function of ra-
dius a of the QD is obtained utilizing the variational method in a 
context of the modified effective mass approximation [5]. As found, 
in the band gap of QDs of zinc selenide, a zone of exciton states, 
which is located at the bottom of the conduction band, appears. 

2. VARIATIONAL CALCULATION OF THE EXCITON GROUND-
STATE ENERGY IN THE NANOSYSTEM 

A model of a quasi-zero-dimensional system as a neutral spherical 
semiconductor QD of radius a, which contains a semiconductor ma-
terial in the bulk with a dielectric constant 2, surrounded by a me-
dia with dielectric permittivity 1, is considered. Within the volume 
of the described QD, electron (e) and hole (h) with the effective 
masses me and mh, respectively (re and rh—distance of electron and 
hole from the centre of the QD), are moving. Assuming the electron 
and hole bands as parabolic, the characteristic quantities for a prob-
lem, 
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are the Bohr radii of the electron, hole, and exciton, respectively, in 
a semiconductor with the permittivity 2 (e is the electron charge, 
and 0 ( )

e h e h
m m m m    is the reduced exciton mass). 

 The energy of the polarization interaction U(re,rh,a) with a rela-
tive permittivity 2/11 can be represented as the algebraic 
sum of energies of the interactions of an electron and a hole with 
‘themselves’,   ,

hh h
V r a ,  ,

ee e
V r a , and with ‘strangers’, 

   , , , ,
eh e h he e h

V r r a V r r a  , respectively [5–7]: 

          , , , , , , , ,
e h hh h ee e eh e h he e h

U r r a V r a V r a V r r a V r r a       , (2) 



40 S. I. POKUTNYI, P. P. GORBYK, S. M. MAKHNO et al. 

  
2 2

2
2 2

2 1

,
2hh h

h

e a
V r a

a a r


 
    

, (3) 

  
2 2

2
2 2

2 1

,
2ee e

e

e a
V r a

a a r


 
    

, (4) 

    
 

 


  
     

2

1 22 22

, , , ,
2 / 2 cos

eh e h he e h

e h e h

e a
V r r a V r r a

a
r r a r r a

, (5) 

where    2 1 2 1        —parameter, ,
e h
r r  —angle. 

 Within the studied simple model of quasi-zero-structures within 
the framework of the above-mentioned approximations as well as 
the effective mass approximation, using a triangular coordinate 
system , ,

e e h h e h
r r r r r r r     with initial point in the centre 

of the QD, the Hamiltonian of the exciton moving in the QD vol-
ume, transforms into [5, 6]: 
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where the first three terms are the operators of the kinetic energy 
of electron, hole and excitons; 0

g
E —band gap in the unlimited semi-

conductor with dielectric permittivity 2. In Hamiltonian H(re,rh,a) 
(6), the energy of polarization interaction U(re,rh,a) is determined 
by formulas (2)–(5), and the energy of the Coulomb interaction be-
tween the electron and the hole ( )

eh
V r  is described by the formula: 

 
2

2

( )
eh

e
V r

r
 


. (7) 

In Hamiltonian, the exciton potential (6), 

    , 0 at , and , at ,
e h e h e h e h

V r r r r a V r r r r a     , (8) 

describes a motion of quasi-particles in the QD volume via model of 
the infinitely deep potential well. 
 The variation of radial wave function of the base state of an exci-
ton (1s-electron state and 1s-hole state) in the QD with radius a can 
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be written as follows [5, 6]: 
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 To determine the energy of the base state of the exciton 

1,0,0;1,0,0( )E a  within the variational method for the QD radius a, the 
average value of Hamiltonian of an exciton (6) with wave functions 
(9) can be written as follows: 
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dr dr dr r r r r r r H r r a r r r
 (10) 

 The calculation of the energy–radius dependence, 1,0,0;1,0,0( )E a , for 
the QD with radius a in the base state of the exciton (ne1, 
leme 0; nh 1, lh mh 0 where ne, le, me and nh, lh, mh are prin-
cipal, orbital and magnetic quantum numbers of the electron and a 
hole, respectively) was performed via minimization of function 

1,0,0;1,0,0( , ( ))E a a  (10). 
 The results of the variational calculation of the base state of the 
exciton energy 1,0,0;1,0,0( )E a  (10) of the QD with radius a are shown in 
Fig. 1. The obtained values of the energy of the base state of the 

 

Fig. 1. Energy of a ground state of the exciton, Е1,0,0;1,0,0(а,) (10), as func-
tion of radius a of the quantum dot of the zinc selenide, where Eg is a 
band gap of zinc selenide. 
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exciton 1,0,0;1,0,0( )E a  are valid only for values of the exciton energy, 
which are governed by the inequality:   0

1,0,0;1,0,0( ) ( )
g

E a E V a , 
where ( )V a  is a depth of the potential well of the electron in the 
quantum dot. For a wide class of the semiconducting A2B6 QDs in 
size range of 0

ex
a a , the value of ( )V a  is of 2.3–2.5 eV [5, 6]. 

 The Coulomb attraction between the electron and the hole within 
the unlimited semiconductor volume facilitates’ formation of an ex-
citon with large radius. In Hamiltonian of the exciton  , ,

e h
H r r a

(6), which moves in a volume of the QD, the Coulomb attraction 
Veh(r) (7) is also reinforced by a certain effective attraction between 
the electron and the hole caused by the repulsion of the electron 

 ,
ee e

V r a  (4) and the hole  ,
hh h

V r a  (3) from their own images (see 
Fig. 1). Under this conditions, energy of the effective repulsion be-
tween the electron and the hole described by terms  , ,

eh e h
V r r a  and 

 , ,
he e h

V r r a  (5), which are inducing an attraction of quasi-particles 
to the surface of the QD (to the ‘foreign’ images), will be less than 
the energy of additional effective attraction [5–9]. 
 As a result, with decreasing of the QD radius 0

ex
a a , the value 

of the additional effective attraction between the electron and the 
hole will increase  1a  [5–9]. This effective polarization attraction 
leads to the fact that the exciton moves in the volume of the QD 
with an effective mass ( )a   , which is greater than the mass of 
the exciton 0 in the bulk crystal with a dielectric constant 2. With 
an increase of the QD radius 0

ex
a a , the effective attraction be-

tween the electron and the hole will decrease a1. Starting with 
some values of the QD radius a, which is equal to ac, the energy of 
such effective attraction between the electron and the hole is be-
come smaller when compared with the binding energy of the volu-
metric exciton [5, 6]: 

 
 

2

20
02

ex ex

ex

E Ry
a

 


. (11) 

 The volumetric exciton in the QD was meant as the exciton whose 
structure (reduced effective mass, Bohr radius, and binding energy) 
is not differ from the exciton in the QD in an unlimited semicon-
ductor material. Consequently, the volumetric exciton will appears 
only at the QD size of 0

ex
a a . Moreover, the formation of the vol-

umetric exciton has a threshold character, and it is only possible in 
the QD whereas its size exceeds a certain value of critical radius of 
QD 0

ex
a a  [5, 6]. The behaviour of (a) indicates that, with an in-

crease in radius of the QD 0
ex

a a , the effective mass of the exciton 
( )a    decreases and, at the critical radius of the QD (i.e., 

 03.90, 12.2с exa a  nm), reaches the value of the effective mass of 
the exciton  0 00.137m  in a bulk crystal of ZnSe. Thus, the volu-
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metric exciton occurs in QDs of the zinc selenide when the radius of 
QD reaches   03.90, 12.2с exa a a  nm. 
 Figure 1 displays the dependences of energies Е1,0,0;1,0,0(а,) (10) of 
the base state of exciton in nanosystems containing of zinc selenide 
QDs with radius a and shows that bound states of the electron–hole 
pair occur near to the spherical surface of the QD starting with the 
critical radius of QD а  ас

(1)4.4 nm. The states of the electron–
hole pair, starting with radius of the QD а  ас

(1), are in the region 
of negative energies (measured from the top limit of the band gap 
Eg of a bulk crystal of zinc selenide), which corresponds to a bound 
state of the electron and the hole. In this case, the energy of the 
Coulomb interaction Veh(r) (8) between the electron and the hole and 
the polarization interaction energy U(re,rh,r,a,) (3) for the electron 
and the hole with section of the spherical surface (QD–dielectric 
matrix interaction) are prevail over the dimensional quantization 
energy of the electron and the hole in nanosystems. With an in-
crease in the radius a of the QD, an increase of energy of the base 
state of the exciton Е1,0,0;1,0,0(а,) (10) was observed. Starting with 
radius of the QD of 03,90, 12.2с exa a a    nm, the values (10) of 
energy of the base state of the exciton approaches asymptotically to 
the value of the binding energy of the volumetric exciton 
(Eex28.41 meV) (11) (see Fig. 1). 

3. SPECTROSCOPY OF EXCITON STATES IN QUANTUM DOTS 

From results of the variational calculation of the base state of an 
exciton Е1,0,0;1,0,0(а,) (10) in nanosystems, which contain QDs of the 
zinc selenide with change of an average radii a of QD in interval 
а  ас

(1)4.4 nm, it is follows that, in the band gap of such QDs, a 
zone of the exciton mode with width of 

 EexEex28.41 meV (12) 

appears and is located under the bottom of the conductive zone. 
 The optical properties of the samples of zinc selenide containing 
QDs located in air (with dielectric permeability 28.1 and an effec-
tive mass of the electron and the hole (me/m0)0.17 and 
(mh/m0)0.7, respectively, where m0 is a mass of free electron) was 
reported earlier [7]. For interpretation of the experimental results 
[12], let us assume that the QDs have a spherical shape. The aver-
age radius of those QDs is in the range 

 14 21a    nm. (13) 

 At low experimental concentrations of QDs (x0.003% and 
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x0.03%) [12], the mutual interactions of QDs are nonsignificant. 
The optical properties of these samples were defined by energy spec-
tra of the electron and the hole, which are localized near the spheri-
cal surface of the singular QDs immersed in air. At such low con-
centrations of QDs, whereas optical properties are characterized by 
optical properties of the singular QD in air, a narrowing of the 
band gap zone were detected, 

 Eg 2.61–2.68 eV, (14) 

comparing to the zinc selenide single-crystal band-gap energy (i.e., 
0
g

E 2.7 eV). 
 In Ref. [12], nanodimensional particles of the zinc selenide were 
synthesized via hydrothermal method; 4 mmol of ZnSO4 was dis-
solved in DI water, and then, the ammonia hydroxide was added un-
til complete dissolution of sediment of the zinc hydroxide. Then, a 
sodium selenide (Na2SeO3, 4 mmol in DI water) was added. The solu-
tion of hydrazine sulphate of pH 8–9 (adjusted by NaOH) was added 
to the reaction at the vigorous stirring. Resulting mixture was 
placed into the Teflon lined autoclave and kept at 433 K for 24 
hours. Precipitate was washed with DI water and, therefore, dried 
at 333 K. Results of XRD confirm the cubic phase of the zinc sele-
nide (ZnSe (JCPDS 37-1463)) with crystallite size of about 27 nm 
(see Fig. 2). 
 For samples treated by ammonium hydroxide, which are partially 
dissolve ZnSe, particles aggregate, and the size of crystallite in-
creases up to 42 nm. A width of the band gap zone is determined 
via transforming the spectra into the Kubelka–Munk coordinates. A 
width of the band gap for synthesized semiconductor ZnSe is 

 

Fig. 2. Diffraction patterns for 1—ammonia treated ZnSe and 2—pristine 
ZnSe. 
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Eg 2.61–2.68 eV, and Eg2.56 eV for ammonia-treated sample 
(see Fig. 3). A width of the band gap for samples is narrower than 
for bulk of zinc selenide ( 0

g
E 2.7eV) by 

    0
g g g

E E E  20–90 meV. (15) 

 The exciton mode zone Eex reaches a maximal width (12) start-
ing from radius a of QDs,   12.2

c
a a  nm< which is lesser than 

the average radius a of QDs from interval (13) in research reported 
earlier [12]. Therefore, in regards to (14) and (15), the narrowing in 
the width of band gap comparing to the same in bulk crystal of 
ZnSe for value (15) is conditioned by transfer of the non-
equilibrium electron from quantum size level within the valence 
zone of the QD to the level of the exciton mode with width Eex 
(12). The electron transition within the zone of the exciton mode 
invokes the significant absorption of irradiation in visible and near-
infrared wavelengths and causes a significant blurring of the ab-
sorption edge, which is experimentally observed. The origin of the 
band gap value (Eg2.56 eV) [12] in the framework of the consid-
ered model of the exciton, which moves in a volume of QD of the 
zinc selenide, is not clear. The origination of this value needs a fur-
ther investigation. 
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