© 2012 ІМФ (Інститут металофізики ім. Г. В. Курдюмова НАН України) Надруковано в Україні. Фотокопіювання дозволено тільки відповідно до ліцензії

PACS numbers: 68.37.Lp, 68.55.Nq, 68.60.Dv, 72.15.Jf, 73.40.Jn, 73.50.Lw 73.61.At

Фазовий склад і терморезистивні властивості плівкових систем Ge/Fe і Ag/Fe

О. В. Власенко, О. В. Пилипенко, Л. В. Однодворець

Сумський державний університет, вул. Римського-Корсакова, 2, 40007 Суми, Україна

Вивчено особливості фазового складу, кристалічної структури та терморезистивних властивостей плівкових систем Ge/Fe і Ag/Fe. Наведено експериментальні результати, які встановлюють кореляцію між структурнофазовим складом плівкових систем та їх електрофізичними властивостями.

The features of the phase composition, crystal structure, and thermoresistive properties of film Ge/Fe and Ag/Fe systems are studied. Experimental results are presented, with which a correlation between the structural and phase composition of film systems and their electrophysical properties is revealed.

Изучены особенности фазового состава, кристаллической структуры и терморезистивных свойств плёночных систем Ge/Fe и Ag/Fe. Приведены экспериментальные результаты, которые устанавливают корреляцию между структурно-фазовым составом плёночных систем и их электрофизическими свойствами.

Ключові слова: Ge/Fe, Ag/Fe, фазовий склад, терморезистивні властивості, термічний коефіцієнт опору.

(Отримано 7 липня 2011 р.)

1. ВСТУП

Тонкоплівкові приладові плівкові системи типу феромагнетик/напівпровідник і феромагнетик/шляхетний метал широко застосовуються в сучасній мікроелектроніці та сенсорному приладобудуванні для створення нагромаджувачів інформації великої місткости, вимірювачів малих та великих електричних струмів, магнетовимірювачів, діод і транзисторів Шотткі, елементів спінтроніки та діягностичних приладів. Відносна простота формування багатошарових стру-

511

ктур такого типу, їх унікальні фізичні властивості та широкий спектер можливостей застосування пояснює зацікавленість до експериментального і теоретичного дослідження електрофізичних і магнеторезистивних властивостей та фазових перетворень у процесі термооброблення при різних умовах перемішування окремих компонент системи. Так у роботі [1] вказано на інтенсивні дифузійні процеси в системі Ge/Fe, що призводить до утворення розмитих інтерфейсів. У мультишарах Ag/Fe можливо формування упорядкованих структур, оскільки їх компоненти не перемішуються [2]. За даними роботи [3], при одночасному осадженні компонент не більше 20 ат.% Ад може бути розчинено в ґратниці ОЦК-Fe. Авторами [4] методою імпульсного лазерного розпорошення при кімнатній температурі були одержані плівкові стопи Fe-Ag, які при концентрації Ag до 15% мають ОЦК-структуру, а при концентраціях Ад від 15 до 40% двофазний склад (ОЦК-Fe + ГЦК-Аg). Ці результати вказують на те, що взаємна дифузія атомів Fe і Ag практично відсутня.

Штучно створені системи типу феромагнетик/напівпровідник і феромагнетик/шляхетний метал мають широкі перспективи з точки зору їх використання для створення елементів оперативної пам'яті на магнетних наноструктурах, багатофункціональних сенсорів, термостабільних спінових діод і транзисторів [5].

2. МЕТОДИКА І ТЕХНІКА ЕКСПЕРИМЕНТУ

Для одержання двошарових плівкових зразків на основі Fe і Ge або Аg використовувалася вакуумна устава типу ВУП-5М. Пошарова конденсація і термовідпалювання плівкових систем Ge/Fe/П здійснювались терморезистивною методою при температурі підкладки (П) $T_{\pi} \cong 300$ K і відпалювання $T \cong 900$ K, а у випадку системи Ag/Fe $T_{\pi} \cong 500$ K і $T_{B} \cong 900$ K.

Вимірювання електричного опору виконувалося в автоматичному режимі за допомогою програмно-апаратного комплексу (рис. 1). Керування процесом термовідпалювання здійснювалось програмним забезпеченням у стилі багатовіконного інтерфейсу, розробленим у середовищі графічного програмування LabVIEW. На вкладках головного вікна програми розташовані елементи керування (вони задають параметри термовідпалення, зчитування інформації та роботи програмно-апаратного комплексу) та деякі з елементів виводу інформації. Вимірювання електричного опору виконувалось за чотириточковою схемою з використанням 8-канальних 16-бітних сигмадельта АЦП АDAM-4018 і ADAM-4118 [6]. Для визначення величини опору кожного зразка було сконструйовано окремий вимірювальний контур на основі сталих резисторів високого класу точности.

Кристалічна структура і фазовий склад зразків досліджувався методами електронної мікроскопії та електронографії (прилад

Рис. 1. Структурна схема автоматизованої системи для дослідження терморезистивних властивостей плівкових матеріялів та зовнішній вигляд головного вікна програми для автоматичного відпалювання зразків за схемою «нагрівання-охолодження».

ПЕМ-125К).

3. РЕЗУЛЬТАТИ ТА ЇХ ОБГОВОРЕННЯ

Дослідження фазового складу плівкових систем на основі Fe і Ge вказують на його залежність від температур підкладки і відпалювання. Зокрема, при конденсації плівок Ge на аморфні підкладки (плівка вуглецю, ситал) вони також мають аморфну структуру, а при конденсації на плівку Fe — квазиаморфну (ка-Ge, відносно низькі температури підкладки) або кристалічну (к-Ge) структуру. Плівки Fe, незалежно від температури підкладки, мають кристалічну структуру. Двошарові плівки Ge(20)/Fe(30)/П у невідпаленому і відпаленому стані (рис. 2, табл. 1 і 2) мають кристалічну будову за

Рис. 2. Мікроструктура і відповідні їй електронограми невідпаленої плівкової системи Ge(20)/Fe(30)/П (*a*) та відпаленої до 900 К (б). В дужках указана товщина в нм.

Рис. 3. Мікроструктура невідпаленої (*a*) та відпаленої до T = 800 К (б) плівки Ag(30)/Fe(30)/П.

виключенням, що у першому випадку утвориться незначна кількість аморфного GeO_2 (*a*-GeO₂). На електронограмах від термовідпалених зразків (рис. 2, *б*) фіксуються лінії к-GeO₂, ОЦК-Fe та гексагональної фази GeFe.

Типові електронограми і мікрознімки структури плівкових систем Ag/Fe/II у невідпаленому і відпаленому стані представлено на рис. 3. Розшифрування електронограм (табл. 3 і 4) вказують на незначну розчинність атомів Fe у плівці Ag, оскільки параметер ґратниці Ag в цілому має величину дещо меншу в порівнянні з масивними зразками.

Розшифрування електронограм щойносконденсованої та термостабілізованої плівкової системи Ag(30)/Fe(30)/П представлено в табл. З і 4. Як витікає з цих результатів, у даній плівковій системі зберігається індивідуальність окремих шарів, що можна пояснити особливістю формування зразків методою пошарової конденсації.

					÷	•
Š	<i>I</i> , в.о.	$d_{hkl}, { m \AA}$	hkl		T asa	a, A
1	C	3,528	110		$a-GeO_2$	Ι
2	ЛС	2.03	113		Ka-Ge	
I	Ċ)) (I	110		оцк-ғе	2,860
°	СЛ	1,811	311		ка-Ge	
4	C	1,44	200		OILK-Fe	2,861
ŭ	C	1,197	324		ка-Ge	
9	СЛ	1,089	420		ка-Ge	
7	СЛ	0,91	310		OILK-Fe	2,858
8	СЛ	0,83	222		OILK-Fe	2,859
		ДС — дуже сильн	а, С — сильна, с	л — слабка		$\overline{a}_{\rm Fe}=2,859$
N		<i>I</i> , в.о.	$d_{hkl}, {\rm \AA}$	hkl	Фаза	<i>a</i> , Å
1		СЛ	3,526	110	$ m K-GeO_2$	I
2		СЛ	2,879	102	$ m K-GeO_2$	
3		СЛ	2,503	110	ГЦТ-GeFe	5,002
4		ДС	2,029	$002 \\ 101$	ГЦТ-GeFe ОЦК-Fe	
ũ		СЛ	1,623	103	OILK-Fe	
9		СЛ	1,518	211	ГЦТ-GeFe	Ι
2		СЛ	1,445	300	ГЦТ-GeFe	5,004
80		СЛ	1,251	220	ГЦТ-GeFe	5,003
6		СЛ	1,147	203	ГЦТ-GeFe	
10	-	СЛ	1,0412	021	OILK-Fe	
			стон внедоцитение	рагона пьна		$\bar{a} = 5 003$

СКЛАД І ТЕРМОРЕЗИСТИВНІ ВЛАСТИВОСТІ ПЛІВКОВИХ СИСТЕМ Ge/Fe I Ag/Fe 515

ТАБЛІ	ИЦЯ З. Розши(ррування електро	нограми від щой	іноскоденсован	ої плівкової	систем	а Ag(30)/Fe(30)/П.
N	<i>I</i> , в.о.	$d_{hkl}, $		Φ a3a	lyh		$a, m \AA$
1	C	2,3580		Ag	111		4,084
2	ДС	2,0406	2,0200	Ag; Fe	200	110	4,081;2,876
အ	$^{\mathrm{cp}}$	1,4429	1,4387	Ag; Fe	220	200	4,081; 2,877
4	$^{\mathrm{cp}}$	1,2348		Ag	311		4,087
ũ	cp	1,1800	1,1698	Ag; Fe	222	211	4,087; 2,865
9	СЛ	1,0220	1,0210	Ag; Fe	400	220	4,088; 2,867
2	СЛ	0,9370		Ag	331		4,084
6	СЛ	0,9135		Ag	420		4,085
							$\overline{a}_{{}_{ m Ag}}=4,085,\ \overline{a}_{{}_{ m Fe}}=2,871$
			c				c
Š	I, в.о.		$d_{h_{kl}}, \check{\mathrm{A}}$	Φ_{a3a}	hki		$a, \check{\mathrm{A}}$
1	C	2,359	8	Ag	111		4,087
2	ДС	2,044	1 2,0350	Ag; Fe	200	110	4,088; 2,878
က	cb	1,441	8 1,4347	Ag; Fe	220	200	4,078;2,869
4	cb	1,231	1	Ag	311		4,083
ŭ	cb	1,177	5 1,1715	Ag; Fe	222	211	4,079;2,869
9	СЛ	1,020	5 1,0148	Ag; Fe	400	220	4,082;2,870
2	СЛ	0,935	2	Ag	331		4,076
8	СЛ	0,913	6	Ag	420		4,087
							$\overline{a}_{\rm Ag} = 4,083, \ \overline{a}_{\rm Fe} = 2,870$

516

О. В. ВЛАСЕНКО, О. В. ПИЛИПЕНКО, Л. В. ОДНОДВОРЕЦЬ

Типові температурні залежності питомого опору $\rho(T)$ і термічного коефіцієнта опору $\beta(T)$ для систем на основі Ge і Fe представлено на рис. 4. Їх характерною особливістю є велике значення ρ і, відповідно, — відносно мале значення β , що можна пояснити утворенням обмежених твердих розчинів атомів Ge у шарі Fe.

Можна стверджувати, що, в цьому випадку, як і в системі $Ag/Fe/\Pi$, до великої міри зберігається індивідуальність окремих шарів. Максимум, який спостерігається при температурі відпалювання 700 К, можна пояснити частковою рекристалізацією ка-Ge (перехід ка-Ge \rightarrow к-Ge) з утворенням кристалітів фази Ge₂Fe, яка при подальшому відпалюванні до 900 К переходить у фазу GeFe.

Рис. 4. Температурні залежності ρ і β для системи Ge(40)/Fe(30)/Π. Римськими цифрами вказані номери термостабілізаційних циклів.

Рис. 5. Температурні залежності ρ і β для системи Ag(30)/Fe(30)/П (*a*) та Ag(10)/Fe(30)/П (*b*). Загальна концентрація атомів Ag у плівковій системі складає 37 (*a*) і 17 (*b*) ат.%.

Дослідження терморезистивних властивостей плівкової системи на основі Ag i Fe (рис. 5) вказують на те, що вони також мають відносно великий ρ і малий β , що можна пояснити утворенням обмежених твердих розчинів атомів Ge у шарах Fe (система Ge/Fe) та атомів Fe у шарах Ag (система Ag/Fe). Цей висновок до великої міри підтверджується результатами електронографічної аналізи (табл. 3 і 4).

4. ВИСНОВКИ

Виконані дослідження структурно-фазового стану і електрофізичних властивостей плівкових систем на основі ка- (або *a*-) Ge і Fe та Ag і Fe вказують на те, що при пошаровій конденсації з наступним термовідпалюванням цих систем не реалізуються до кінця умови стабілізації твердих розчинів атомів Ge у шарах Fe та атомів Fe у шарах Ag, у зв'язку з утворенням фаз GeFe і Ge₂Fe у першому випадку та неефективністю дифузійних процесів при термообробленні в другому. Поряд з цим, відносно велике значення питомого опору і, відповідно, мале значення термічного коефіцієнта опору можуть якісно свідчити про утворення обмежених твердих розчинів.

Роботу виконано в межах бюджетної тематики №0112U001381 при фінансовій підтримці МОНМС України.

ЦИТОВАНА ЛІТЕРАТУРА

- 1. Л. А. Чеботкевич, А. В. Огнев, Ю. П. Иванов, К. Lenz, А. И. Ильин, К. С. Ермаков, *ФТТ*, **51**: 1761 (2009).
- 2. T. Phalet and M. J. Prandolini, Phys. Rev. B, 71: 144301 (2005).
- 3. S. Kahl and H.-U. Krebs, *Phys. Rev. B*, 63: 172103 (2000).
- 4. F. Liu, Applied Physics A, 81: 4343 (2005).
- 5. В. Е. Буравцова, Е. А. Ганьшина, В. С. Гущин, С. И. Касаткин, А. М. Муравьев, Н. В. Плотникова, Ф. А. Пудонин, *ФТТ*, **46**, № 5: 864 (2004).
- 6. В. О. Зленко, С. І. Проценко, Р. Сафаріч, *Журнал нано- та електронної фі*зики, **1**, № 2: 34 (2009).