© 2012 ІМФ (Інститут металофізики ім. Г. В. Курдюмова НАН України) Надруковано в Україні. Фотокопіювання дозволено тільки відповідно до ліцензії

PACS numbers: 78.20.Ci, 78.40.-q, 78.66.-w, 78.67.-n, 78.68.+m, 81.15.Cd, 81.40.Tv

Оптичне вбирання та рефрактивні властивості відпалених тонких плівок суперйонного провідника Cu_sPS₅I

І. П. Студеняк, М. Краньчец^{*}, А. А. Чомоляк, М. Ворохта^{**}, В. Матолін^{**}

Ужгородський національний університет, вул. Підгірна, 46, 88000 Ужгород, Україна *Загребський університет, Галлерова алея, 7, 42000 Вараждін, Хорватія **Карловий університет, В Голешовічках, 2, 18000 Прага, Чеська Республіка

За допомогою нереактивного радіочастотного магнетронного напорошення одержано тонкі плівки Cu_6PS_5I на підложжі з кварцового скла. Досліджено спектри пропускання щойнонапорошених та відпалених плівок в інтервалі температур 77–300 К. Вивчено температурну поведінку краю оптичного вбирання та дисперсії показників заломлення, проаналізовано температурні залежності ширини оптичної псевдощілини, Урбахової енергії та показника заломлення. З'ясовано вплив відпалу на оптичні параметри тонких плівок Cu_6PS_5I .

Thin films of Cu_6PS_5I are deposited onto quartz glass substrates by nonreactive radio-frequency magnetron sputtering. Transmission spectra of asdeposited and annealed Cu_6PS_5I thin films within the temperature interval 77–300 K are investigated. Temperature behaviour of optical absorption edge and refractive index dispersion are studied. Temperature dependences of optical pseudo-gap, Urbach energy and refractive index are analysed. The influence of annealing on optical parameters of Cu_6PS_5I thin films is studied.

С помощью нереактивного радиочастотного магнетронного напыления получены тонкие плёнки Cu_6PS_5I на подложке из кварцевого стекла. Исследованы спектры пропускания свеженапылённых и отожжённых плёнок в интервале температур 77–300 К. Изучено температурное поведение края оптического поглощения и дисперсии показателей преломления, проанализированы температурные зависимости ширины оптической псевдощели, урбаховской энергии и показателя преломления. Выяснено влияние отжига на оптические параметры тонких плёнок Cu_6PS_5I .

487

Ключові слова: суперйонний провідник, тонка плівка, оптичне вбирання, показник заломлення.

(Отримано 17 листопада 2011 р.)

1. ВСТУП

488

Монокристали Cu₆PS₅I належать до сполук зі структурою аргіродиту, характеризуються високою йонною провідністю і завдяки цьому є перспективними матеріялами для створення відновлювальних джерел енергії [1–4]. При кімнатній температурі вони відносяться до кубічної симетрії, а при низьких температурах у них відбуваються фазові переходи, один з яких суперйонний [5].

Оптичне вбирання, люмінесценція, комбінаційне розсіяння світла, дисперсія показників заломлення для кристалів Cu_6PS_5I достатньо детально досліджувалися в роботах [4, 6–8]. Нагадаємо, що при низьких температурах на краю оптичного вбирання спостерігаються екситонні смуги, які з підвищенням температури розширюються і повністю розмиваються при переході в суперйонний стан. У суперйонній фазі край оптичного вбирання має експоненційну форму, а його температурна поведінка описується правилом Урбаха [7]. В роботі [7] показано, що Урбахова поведінка краю вбирання в основному обумовлена екситон-фононною взаємодією, а додаткове розмиття краю вбирання викликане температурним та структурним розупорядкуванням кристалічної ґратниці, причому структурне розупорядкування в суперйонних провідниках складається з статичної та динамічної компонент.

Тоді як оптичні властивості монокристалів Cu_6PS_5I достатньо детально вивчено, дослідження фізичних властивостей тонких плівок на їх основі тільки розпочинаються. Слід зазначити, що тонкі плівки на основі суперйонних провідників можуть знайти широке застосування при розробленні суперконденсаторів нового покоління [9].

Метою даної роботи є дослідження спектрів оптичного пропускання та дисперсії показників заломлення відпалених тонких плівок Cu_6PS_5I , а також вивчення впливу відпалу на температурну поведінку таких оптичних параметрів як ширина оптичної псевдощілини, Урбахова енергія та показник заломлення.

2. ЕКСПЕРИМЕНТАЛЬНА ЧАСТИНА

Тонкі плівки Cu_6PS_5I наносилися на підкладку з кварцового скла за допомогою нереактивного радіочастотного магнетронного напорошення; швидкість нанесення плівок складала З нм/хв. Напорошення виконувалося при кімнатній температурі в атмосфері Ar. Результати рентгеноструктурних досліджень свідчать, що щойнонапорошені плівки утворюються аморфними. Відпал плівок виконувався у вакуумі протягом 1 години при температурах 50°С та 100°C.

Структурні дослідження, виконані для щойнонапорошених плівок з використанням сканівного електронного мікроскопа (Hitachi S-4300), вказали на формування однорідної двовимірної структури. Однорідність хемічного складу плівок підтверджено за допомогою методики енергодисперсійної Рентґенової спектроскопії, яка дозволяє визначати хемічний склад у різних точках поверхні плівки.

З використанням еліпсометра ЛЕФ-3М (λ = 632,8 нм) було визначено показник заломлення та товщину щойнонапорошеної плівки, які складають відповідно 2,460 та 512 нм. Спектри оптичного пропускання досліджувалися в інтервалі температур 77-300 К за допомогою гратчастого монохроматора МДР-3. На їх основі були одержані спектральні залежності коефіцієнта вбирання та дисперсійні залежності показника заломлення для щойнонапорошених та відпалених тонких плівок.

3. РЕЗУЛЬТАТИ ТА ЇХ ОБГОВОРЕННЯ

На рисунку 1 наведено спектри пропускання щойнонапорошеної та відпалених при 50°С і 100°С тонких плівок Си_вРS₅I. Видно, що з відпалом відбувається розмиття високоенергетичної частини спектрів пропускання, а також розширення, зміщення та зменшення інтенсивности в максимумах інтерференції. Результати температурних досліджень спектрів пропускання, виконаних в інтервалі 77-

100°С (3) тонких плівок Си₆PS₅I.

Рис. 1. Спектральні залежності ко- Рис. 2. Спектральні залежності коеефіцієнта пропускання при темпе- фіцієнта пропускання відпаленої при ратурі 300 К для щойнонапороше- 100°С тонкої плівки Си₆PS₅I при різної (1) та відпалених при 50°С (2) і них температурах: (1) 100, (2) 150, (3) 200, (4) 250, (5) 300 K.

Тонка плівка	Щойнонапорошена	Відпалена при 50°С	Відпалена при 100°С
α_0 , cm ⁻¹	$2,07 \cdot 10^5$	$1,91 \cdot 10^5$	$2,15 \cdot 10^5$
E_0 , eB	3,152	3,249	3,297
$E_{_g}^{st}$, ${ m eB}$	2,008	1,801	1,764
$E_{\scriptscriptstyle U}$, меВ	217,5	273,4	284,6
σ_0	0,177	0,147	0,143
$\hbar\omega_{_{p}}$, ме ${ m B}$	65,8	70,6	72,3
θ_E , K	764	819	839
(<i>E</i> _{<i>u</i>}) ₀ , меВ	185,9	239,9	252,2
$(E_u)_1$, меВ	377,4	476,9	504,3
$E^*_g(0)$, eB	2,163	2,001	1,922
S_g^*	28,6	40,7	34,1

ТАБЛИЦЯ. Параметри Урбахового краю вбирання та ЕФВ щойнонапорошеної та відпалених тонких плівок Cu₆PS₅I.

300 К, проілюстровано на прикладі тонких плівок Cu_6PS_5I , відпалених при 100°С (рис. 2). Вони свідчать про довгохвильове зміщення високоенергетичної частини спектрів пропускання, яке узгоджується з температурною поведінкою краю оптичного вбирання та інтерференційних максимумів, для яких спостерігається зменшення пропускання в максимумах.

Аналіза спектрів вбирання відпалених плівок показала, що край оптичного вбирання в області його експоненційної поведінки в тонких плівках Cu₆PS₅I, подібно до монокристалів, описується правилом Урбаха [10]

$$\alpha(h\nu, T) = \alpha_{o} \exp\left[\frac{\sigma(h\nu - E_{o})}{kT}\right] = \alpha_{o} \exp\left[\frac{h\nu - E_{o}}{E_{U}(T)}\right], \quad (1)$$

де E_U — Урбахова енергія (енергетична ширина краю вбирання); о — параметер нахилу краю вбирання; α_0 та E_0 — координати збіжности Урабахового «віяла» (наведені в табл.). Типові спектри краю оптичного вбирання для інтервалу температур 77–300 К проілюстровано на прикладі тонких плівок Cu₆PS₅I, відпалених при 50°C (рис. 3).

Зазначимо, що ширина оптичної псевдощілини E_g^* , визначена як спектральне положення краю вбирання при значенні коефіцієнта вбирання $\alpha = 10^3$ см⁻¹, при відпалі зменшується, тоді як Урбахова енергія E_U зростає на 31%. Температурну поведінку Урбахового краю вбирання в тонких плівках Cu₆PS₅I можна пояснити електронфононною взаємодією (ЕФВ). Параметри ЕФВ визначалися по тем-

200, (3) 300 К. На вставці наведено Си₆PS₅I. температурну залежність параметра σ.

Рис. 3. Спектральні залежності ко- Рис. 4. Температурні залежності шиефіцієнта вбирання відпаленої при рини оптичної псевдощілини E_{g}^{*} (1) 50°С тонкої плівки Cu_6PS_5I при та Урбахової енергії $E_U(2)$ для відпарізних температурах: (1) 77, (2) леної при 50°С тонкої плівки

пературній залежності параметра о (рис. 3) за формулою Мара [11]

$$\sigma(T) = \sigma_0 \left(\frac{2kT}{\hbar \omega_p} \right) \tanh\left(\frac{\hbar \omega_p}{2kT} \right), \qquad (2)$$

де $\hbar\omega_p$ — енергія ефективного фонона в одноосциляторному моделю, що описує ЕФВ; σ_0 — параметер, зв'язаний зі сталою ЕФВ g співвідношенням $\sigma_0 = 2/3g$ (параметри $\hbar\omega_n$ та σ_0 наведено в табл.). Для щойнонапорошених та відпалених плівок Cu₆PS₅I параметер σ₀ < 1, що є свідченням сильної ЕФВ [12]. Встановлено, що з відпалом ЕФВ посилюється (параметер о зменшується), а енергія ефективного фонона $\hbar \omega_p$ збільшується (табл.).

Температурні залежності ширини оптичної псевдощілини та Урбахової енергії E_U для тонкої плівки Cu_6PS_5I , відпаленої при 50°С, наведено на рис. 4. Показано, що температурні залежності E_{g}^{*} та E_{U} добре описується в межах моделю Айнштайна за допомогою співвідношень [13, 14]

$$E_g^*(T) = E_g^*(0) - S_g^* k \theta_E \left[\frac{1}{\exp\left(\theta_E / T\right) - 1} \right]$$
(3)

$$(E_U) = (E_U)_0 + (E_U)_1 \left[\frac{1}{\exp(\theta_E / T) - 1}\right]$$
(4)

де $E_{g}^{*}(0)$ та S_{g}^{*} — відповідно ширина оптичної псевдощілини при

492

0 К та безрозмірна константа; $(E_U)_0$ та $(E_U)_1$ — сталі величини; θ_E — температура Айнштайна, яка відповідає усередненій частоті фононних збуджень системи невзаємочинних осциляторів. Одержані при описі залежностей $E_g^*(T)$ та $E_U(T)$ параметри $E_g^*(0)$, S_g^* , $(E_U)_0$, $(E_U)_1$ та θ_E для тонких плівок наведено в табл., а температурні залежності E_g^* та Урбахові енергії E_U , розраховані за формулами (3) і (4), представлено на рис. 4 суцільною та штрихованою лініями відповідно.

У роботі [15] показано, що Урбахова поведінка краю вбирання та його форма визначаються впливом структурного та температурнозалежних типів розупорядкування, тобто Урбахова енергія E_U записується у вигляді:

$$E_{U} = \left(E_{U}\right)_{T} + \left(E_{U}\right)_{X} = \left(E_{U}\right)_{T} + \left(E_{U}\right)_{X,\text{stat}} + \left(E_{U}\right)_{X,\text{dyn}},$$
(5)

де $(E_U)_T$ та $(E_U)_X$ — відповідно внески температурно-залежних типів розупорядкування та структурного розупорядкування в E_U ; $(E_U)_{X,\text{stat}}$ та $(E_U)_{X,\text{dyn}}$ — відповідно внески статичного структурного розупорядкування та динамічного структурного розупорядкування в $(E_U)_X$. Статичне структурне розупорядкування $(E_U)_{X,\text{stat}}$ в суперйонних провідниках $\text{Сu}_6\text{PS}_5\text{I}$ викликане структурними неоднорідностями, обумовленими високою концентрацією неупорядкованих вакансій міді, тоді як динамічне структурне розупорядкування $(E_U)_{X,\text{dyn}}$ викликане швидким рухом мобільних йонів міді, що забезпечують високу йонну провідність [4].

Слід зазначити, що перший доданок у правій частині (4) представляє статичне структурне розупорядкування, тоді як другий — температурозалежні типи розупорядкування: температурне розупорядкування, викликане тепловими коливаннями ґратниці, та динамічне структурне розупорядкування, обумовлене наявністю рухливих йонів у суперйонних провідниках.

Виявилося, що в щойнонапорошеній тонкій плівці Cu_6PS_5I абсолютне значення внеску статичного структурного розупорядкування в Урбахову енергію більш, ніж у 19 разів перевищує аналогічне значення для монокристалу, а його відносне значення зростає від 49,7% в монокристалі до 85,5% у тонкій плівці. З відпалом відносний внесок статичного структурного розупорядкування зростає до 88,6%.

На основі інтерференційних спектрів пропускання були розраховані дисперсійні залежності показників заломлення тонких плівок

Рис. 5. Дисперсійні залежності по-Рис. 6. Температурні залежності показника заломлення для щойнонапорошеної тонкої плівки Cu_6PS_5I порошеної (1) та відпалених при при різних температурах: (1) 77, (2) 50°С (2) і 100°С (3) тонких плівок 100, (3) 150, (4) 200, (5) 250, (6) 273, Cu_6PS_5I . (7) 300 К.

 Cu_6PS_5I у спектральному інтервалі 450–750 нм. На рисунку 5 проілюстровано типові дисперсійні залежності показника заломлення в інтервалі температур 77–300 К для щойнонапорошеної тонкої плівки. Встановлено зростання дисперсії показника заломлення в короткохвильовій області, а також збільшення величини показника заломлення з підвищенням температури (рис. 6). Відпал призводить до збільшення показника заломлення у відпаленій при 100°С плівці по відношенню до щойнонапорошеної на 6%. Виявлене збільшення показника заломлення показника заломлення з підвищення при відпалі добре узгоджується зі зменшенням ширини оптичної псевдощілини в досліджуваних тонких плівках (табл.)

4. ВИСНОВКИ

Тонкі плівки суперйонного провідника Cu_6PS_5I наносилися на підкладку з кварцового скла за допомогою нереактивного радіочастотного магнетронного напорошення, а їх відпал виконувався у вакуумі впродовж 1 години при температурах 50°C та 100°C. Виконано температурні дослідження спектрів пропускання щойнонапорошених та відпалених плівок в інтервалі 77–300 К. Виявлено Урбахову поведінку краю оптичного вбирання у щойнонапорошених та відпалених плівках, а також одержано температурні залежності ширини оптичної псевдощілини та Урбахової енергії, які добре описуються в межах Айнштайнового моделю. Встановлено, що відпал плівок призводить до зменшення ширини оптичної псевдощілини, збільшення Урбахової енергії, посилення ЕФВ та збільшення енергії ефективного фонона. За результатами інтерференційних досліджень розраховано дисперсію показників заломлення і виявлено збільшення показника заломлення у відпалених плівках.

ЦИТОВАНА ЛІТЕРАТУРА

- 1. W. F. Kuhs, R. Nitsche, and K. Scheunemann, *Mater. Res. Bull.*, 11: 1115 (1976).
- 2. T. Nilges and A. Pfitzner, Z. Kristallogr., 220: 281 (2005).
- 3. I. P. Studenyak, M. Kranjčec, and M. V. Kurik, J. Phys. Chem. Solids, 67: 807 (2006).
- 4. І. П. Студеняк, М. Краньчец, Ефекти розупорядкування в суперйонних провідниках зі структурою аргіродита (Ужгород: Говерла: 2007), с. 200.
- 5. A. Gagor, A. Pietraszko, and D. Kaynts, J. Solid State Chem., 178: 3366 (2005).
- 6. I. P. Studenyak, V. O. Stefanovich, M. Kranjčec et al., *Solid State Ionics*, 95: 221 (1997).
- I. P. Studenyak, M. Kranjčec, Gy. S. Kovacs et al., J. Phys. Chem. Solids, 60: 1897 (1999).
- 8. Д. Ш. Ковач, А. Н. Борец, И. П. Студеняк и др., *Укр. физ. журн.*, **31**, № 8: 1201 (1986).
- 9. A. L. Despotuli, A. V. Andreeva, and B. Rambabu, *Ionics*, 11: 306 (2005).
- 10. F. Urbach, Phys. Rev., 92: 1324 (1953).
- 11. H. Sumi and A. Sumi, J. Phys. Soc. Jpn, 56, No. 8: 2211 (1987).
- 12. M. V. Kurik, phys. stat. sol. (a), 8:9 (1971).
- 13. M. Beaudoin, A. J. G. DeVries, S. R. Johnson et al., *Appl. Phys. Lett.*, **70**: 3540 (1997).
- 14. Z. Yang, K. P. Homewood, M. S. Finney et al., J. Appl. Phys., 78: 1958 (1995).
- 15. G. D. Cody, T. Tiedje, B. Abeles et al., Phys. Rev. Lett., 47: 1480 (1981).