© 2012 ІМФ (Інститут металофізики ім. Г. В. Курдюмова НАН України) Надруковано в Україні. Фотокопіювання дозволено тільки відповідно до ліцензії

PACS numbers: 07.78.+s, 07.79.-v, 61.05.J-, 61.43.Er, 68.37.Lp, 87.64.Bx, 87.64.Ee

Теорія формування контрасту електронно-мікроскопічних зображень аморфних речовин складного хемічного складу

М. Ю. Бобик, Є. І. Боркач^{*}, В. П. Іваницький, В. І. Сабов

Ужгородський національний університет, вул. Капітульна, 13, 88000 Ужгород, Україна *Закарпатський угорський інститут ім. Ференца Ракоці II, вул. Ійеша, 1, 90200 Берегово, Україна

Розроблено теорію формування електронно-мікроскопічних зображень аморфних матеріялів і наносистем складного хемічного складу з урахуванням як амплітудного, так і дифракційного внеску в контраст. Показано, що за формування контрасту електронно-мікроскопічних зображень таких об'єктів відповідають три складові розсіяння електронів у межах апертурної діяфраґми об'єктивної лінзи: пружнє некогерентне, пружнє когерентне та непружній фон. Варіяції інтенсивности електронно-мікроскопічних зображень за рахунок пружнього некогерентного розсіяння визначаються розподілом атомової густини, змінами хемічного складу та відхилами геометричної товщини локальних ділянок досліджуваного зразка. Внесок пружнього когерентного розсіяння в контраст зображень зумовлюється відмінностями структурних факторів різних локальних ділянок, а внесок непружнього фону — відмінностями інтенсивности такого фону.

The theory of formation of transmission electron microscopy images of amorphous materials and nanoscale systems of complex chemical composition is developed, taking into account both amplitude and diffraction contributions to the contrast. As shown, three electron scattering components within the limits of objective-lens aperture diaphragm are responsible for forming of contrast of electron microscopy images of such objects: elastic non-coherent, elastic coherent and inelastic background. Variations of electron microscopy images' intensity due to elastic non-coherent scattering are determined by distribution of atomic density, changes of chemical composition, and deviation of geometrical thickness of local areas of the tested specimen. The contribution of elastic coherent scattering to the contrast of images is caused by differences in structural factors of different local areas, and contribution of inelastic background is conditioned by the differences of in-

423

tensity of such a background.

Разработана теория формирования электронно-микроскопических изображений аморфных материалов и наносистем сложного химического состава с учётом как амплитудного, так и дифракционного вклада в контраст. Показано, что за формирование контраста электронно-микроскопических изображений таких объектов отвечают три составляющих рассеяния электронов в пределах апертурной диафрагмы объективной линзы: упругое некогерентное, упругое когерентное и неупругий фон. Вариации интенсивности электронно-микроскопических изображений за счёт упругого некогерентного рассеяния определяются распределением атомной плотности, изменениями химического состава и отклонениями геометрической толщины локальных участков исследуемого образца. Вклад упругого когерентного рассеяния в контраст изображений обусловливается отличиями структурных факторов разных локальных участков, а вклад неупругого фона — отличиями интенсивности такого фона.

Ключові слова: контраст, електронно-мікроскопічне зображення, аморфний матеріял, наномасштабна система, хемічний склад.

(Одержано 8 листопада 2011 р.)

1. ВСТУП

Теорію формування електронно-мікроскопічних (ЕМ) зображень в електронному мікроскопі в режимі «на просвіт» детально розроблено для кристалів [1]. Для аморфних речовин така цілісна завершена теорія відсутня. Існують лише окремі дослідження в даному напрямку, які переважно обмежуються структурно однорідними об'єктами і базуються на використанні теорії амплітудного контрасту [2]. Такий підхід обґрунтовують тим, що при дослідженні невпорядкованих об'єктів з розмірами деталей будови значно більшими ніж міжатомові віддалі, хвильові властивості електронів не відіграють суттєвої ролі. Тому при трактуванні контрасту ЕМ-зображень аморфних речовин, включаючи і його кількісну оцінку, дифракційними ефектами нехтують. У більшості експериментальних робіт та комп'ютерних програм з обробляння ЕМ-зображень використовується саме такий підхід. Для аморфних речовин складного хемічного складу, для структурно- та фазово-неоднорідних об'єктів, для нанорозмірних зразків та систем даний підхід дуже обмежений і не враховує цілої низки важливих факторів, які суттєво впливають на процеси формування ЕМ-зображень. Тому важливим є теоретичне пояснення впливу різних додаткових можливих елементів структури аморфних речовин на величину контрасту ЕМ-зображень.

У процесі розвитку просвітної електронної мікроскопії було показано, що вбирання електронів практично не впливає на утворення контрасту ЕМ-зображень [3]. Це зумовлено використанням

Рис. 1. Вплив апертурної діяфраґми об'єктивної лінзи на формування контрасту ЕМ-зображень.

об'єктів з дуже малими товщинами, що необхідно для забезпечення умови однократного розсіяння та зменшення впливу хроматичної аберації об'єктивної лінзи на роздільчу здатність мікроскопа. Тому основною причиною виникнення контрасту на ЕМ-зображеннях вважають однократне розсіяння електронів зондувального жмута на атомах об'єкту. При розгляді таких процесів найчастіше використовують два основні підходи.

1. У спрощеному варіянті вважають, що внаслідок пружньої та непружньої взаємодії з атомами об'єкта частина електронів зондувального жмута відхиляється на достатньо великі кути і не проходять через апертурну діяфраґму (рис. 1). Це призводить до більшого ослабнення інтенсивности тих електронних жмутів, які формують зображення певних локальних ділянок об'єкта з більшою розсівною здатністю. Наприклад, заштрихована ділянка зразка на рис. 1 розсіює електрони більш ефективно і більша частка розсіяних даною ділянкою електронів вийде за межі апертурної діяфраґми. Тому у відповідну точку площини ЕМ-зображення попадатиме більш слабкий потік електронів, і виділена ділянка на зображенні буде візуалізуватися більш темною, в порівнянні з сусідніми ділянками. Для однорідного матеріялу такий процес можна описати простим законом, подібним до закону Буґера–Лямберта–Бера:

$$I = I_0 \exp(-Qd), \tag{1}$$

де I — розподіл інтенсивности електронного жмута в площині формування ЕМ-зображення в режимі світлого поля; I_0 — інтенсивність зондувального електронного жмута; Q — параметер, що характеризує інтеґральну розсівну здатність відповідної локальної ді-

лянки об'єкта; *d* — розподіл геометричної товщини об'єкта.

Таким чином, основою першого підходу є співвідношення (1), яке зв'язує інтенсивність електронного жмута I в певній точці формування ЕМ-зображення з інтеґральною розсівною здатністю відповідної локальної ділянки однорідного зразка Q та геометричною товщиною d цієї ділянки. По відношенню до двох останніх параметрів зразка, як правило, приймають досить грубі наближення, які не прийнятні для аморфних об'єктів складного хемічного складу, особливо для тонких плівок та наносистем. При їх вивченні слід розглядати комплексну картину структури реальних невпорядкованих речовин. 2. Другий підхід є найбільш загальним, оскільки розглядає розсіяння електронної хвилі на всіх атомах об'єкта з наступною їх інтерференцією між собою. В результаті утворюється просторова дифракційна картина, яка несе в собі основну інформацію про структуру об'єкта, визначаючи при цьому і розподіл контрасту на його ЕМзображенні. Саме такий підхід ми використали для розвитку теоретичних уявлень про процеси формування ЕМ-зображень аморфних речовин складного хемічного складу.

2. МЕТОДИКА ДОСЛІДЖЕНЬ

Основою досліджень даної роботи є аналіза диференційних та повних ефективних перерізів процесів різного типу розсіяння електронів на об'єкті складного хемічного складу. Визначальним при цьому вважається пружнє розсіяння. Задамо його у вигляді зведеної до одного атома функції диференційного перерізу $D_n(s)$, заданої в оберненому просторі через модулі вектора розсіяння електронів $s = 4\pi \sin(\theta)/\lambda$ (θ — половина кута розсіяння; λ — довжина де Бройлевої хвилі електронів жмута). Такий переріз безпосередньо визначає розподіл у просторі інтенсивности пружнього розсіяння електронів. Для елементарних речовин [4]:

$$D_{\rm m}(s) = F^2(s) [1 + I_{\rm ms}(s)], \qquad (2)$$

де $F^2(s)$ — атомовий фактор зразка, а $I_{n\kappa}(s)$ — кутовий розподіл інтенсивности пружнього когерентного розсіяння, яке припадає на один атом. Останню функцію можна задати у вигляді двох незалежних інтерференційних складових $S_a(s)$ і $S_0(s)$. $S_a(s)$ описує інтерференційний внесок у розсіяння електронів, який визначається атомовою структурою об'єкта. Складова ж $S_0(s)$ задається неоднорідностями всього континууму об'єкта та його геометричними розмірами і формою. Для аморфних речовин обидві складові мають помітно розмиті інтерференційні осциляції в області різних *s*, амплітуда яких швидко спадає до нуля зі збільшенням *s*. Ці інтерференційні ефекти виявляються в кількох незначних за інтенсивністю розмитих гало на електронограмах.

Для речовин складного хемічного складу загальне розсіяння на об'єкті можна описати сумою диференційних перерізів $D_n(s)$ всіх атомів зразка. Тоді, з врахуванням співвідношення (2), інтенсивність пружнього розсіяння зондувального жмута на об'єкті в цілому складатиметься з двох основних частин. Перша визначає некогерентне пружнє розсіяння, що дорівнює сумі ефектів розсіяння кожним окремим атомом незалежно від всіх інших:

$$\sum_{i=1}^{N} F_{i}^{2}(s), \qquad (3)$$

де *N* — кількість атомів, які беруть участь у формуванні зображення, а *F_i*(*s*) — атомова амплітуда розсіяння *i*-го атома зразка. Друга — пружня когерентна частина

$$\sum_{i=1}^{N} F_{i}^{2}(s) I_{\text{IIK}}(s) , \qquad (4)$$

яка відображає дифракційні ефекти, пов'язані із взаємодією електронних хвиль, розсіяних різними атомами.

У багатьох випадках електронно-мікроскопічних досліджень крім пружнього розсіяння слід враховувати і вплив непружньо й кратно розсіяних електронів. Його врахування важливе з низки причин. По-перше, непружнє розсіяння призводить до демонохроматизації електронного жмута і, тим самим, знижує роздільчу здатність мікроскопа через зріст хроматичної аберації об'єктива. Подруге, їх дія погіршує якість ЕМ-зображень. По-третє, в неоднорідних за хемічним складом об'єктах відмінності інтенсивности непружнього й кратного розсіяння електронів на різних локальних ділянках зразка можуть суттєво впливати на величину контрасту. Особливо зростає роль кратного й непружнього розсіяння при збільшенні товщини зразків, та при наявності в їх складі значної концентрації легких хемічних елементів.

Подібно до непружнього внеску, негативно впливають на якість ЕМ-зображення й інші паразитні ефекти, зумовлені розсіянням електронів на атомах залишкової атмосфери та конструктивних елементів колони електронного мікроскопа. Якщо підсумувати їх внесок, то разом із непружнім розсіянням вони утворюють загальний шумовий фон, який суттєво впливає на величину контрасту та на якість ЕМ-зображень аморфних речовин. Важливою особливістю цього фону є неперервна плавна монотонна зміна при зміні вектора розсіяння *s*. На рисунку 2 наведено різні складові процесів розсіяння електронів у випадку аморфної плівки селеніду арсену.

Відповідно до співвідношень (3) та (4), в основу побудови строгої теорії формування ЕМ-контрасту для складних аморфних речовин

Рис. 2. Типова дифрактограма аморфної плівки $As_{40}Se_{60}$ товщиною 0,8 нм (крива 1) з виділеними різними складовими інтенсивности розсіяння: пружнє когерентне (2), пружнє некогерентне (3) та загальний непружній фон (4).

слід покласти аналізу процесів загального розсіяння електронів всіма атомами зразка. Для цього слід ввести в розгляд параметри різного типу розсіяння електронів атомами всіх тих хемічних елементів, які входять до даного матеріялу. В строгому загальному вигляді вирішення даної задачі на сьогодні неможливе як теоретично, так і експериментально. Тому нами використано адекватні до реального стану речей наближення.

Одне з наближень можна обґрунтувати тим фактом, що ЕМ-зображення є результатом «накладання» інтенсивностей розсіяння електронів великої кількости атомів. Тому формування такого зображення можна математично задати у вигляді сумування всіх розсіяних окремими атомами електронних хвиль за законами, характерними для когерентних і некогерентних процесів окремо. Саму процедуру сумування можна суттєво спростити, ввівши в розгляд усереднені в межах деякого локального об'єму зразка параметри атомового розсіяння електронів. Звичайно, що достовірність даного наближення буде визначатися тими правилами, за якими виконується усереднення. Одне з них має визначати розміри локальних областей зразка, в межах яких виконується усереднення. Нами пропонується такі області брати у вигляді циліндричної ділянки з висотою, рівною геометричній товщині локальної ділянки зразка, і з діяметром, не меншим роздільчої здатности електронного мікроскопа по точках d_p при звичайному режимі його роботи «на просвіт».

Такий вибір якнайбільше відповідає реальній геометрії формування ЕМ-зображень (рис. 1), а величину d_p можна умовно прийняти рівною 1 нм. Дані геометричні параметри відповідають мінімальному об'єму речовини, який вже може розглядатися як неперервний континуум певного матеріялу [5]. Надалі вважатимемо, що така виділена локальна ділянка зразка є однорідною відносно всіх її структурних параметрів: хемічного складу, густини, будови атомової сітки, нанопористости, тощо.

Друге наближення необхідне для подолання значних труднощів в аналізі електронного контрасту, пов'язаних з дією процесів кратного та непружнього розсіяння електронів у зразку. Тому надалі вважатимемо, що якщо існує значне кратне або непружнє розсіяння, то воно входить до складу загального шумового фону, оскільки за своєю поведінкою близьке до нього. Крім того, для підвищення достовірности кількісної аналізи зображень на просвіт, електроннозондові дослідження слід виконувати з використанням фільтра непружньо розсіяних електронів [6].

3. РЕЗУЛЬТАТИ ДОСЛІДЖЕНЬ ТА ЇХ АНАЛІЗА

Процес пружнього розсіяння на атомах речовини характеризусться двома взаємозв'язаними параметрами: атомовим диференційним D(s) та атомовим повним σ ефективними перерізами. Між цими двома атомовими перерізами існує відомий зв'язок [3]:

$$\sigma = 2\pi \int_{0}^{\pi} D(\theta) \sin \theta d\theta \,. \tag{5}$$

Однак, для практичної електронної мікроскопії на просвіт важливу роль відіграють лише ті акти розсіяння, в результаті яких електрони відхиляються на кути, більші за апертурний кут об'єктивної лінзи α (рис. 1). Такі процеси описуються ефективним атомовим перерізом розсіяння

$$\sigma_{\alpha} = 2\pi \int_{\alpha}^{\pi} D(\theta) \sin \theta d\theta \,. \tag{6}$$

Оскільки всі електрони, розсіяні атомом на кут $\theta > \alpha$, вбираються апертурною діяграмою і викликають дефіцит інтенсивности у площині зображення, то контраст світлопольового зображення, пов'язаний зі зміною розсіяння в сусідніх ділянках, буде визначатися саме величиною σ_{α} атомів даних ділянок.

У межах прийнятих допущень розглянемо особливості утворення контрасту ЕМ-зображень для складних за хемічним складом аморфних матеріялів. Для цього проаналізуємо внесок в електронний контраст локальної ділянки досліджуваного зразка кожного з двох виділених вище основних складових розсіяння.

Пружнє некогерентне розсіяння. Найпростішим для аналізи є пружнє некогерентне розсіяння. Оскільки при проходженні зразка складного хемічного складу електрони розсіюються на різних хемічних елементах, то інтенсивність ЕМ-зображення локальної ділянки буде визначатися відносним співвідношенням цих елементів у ній.

Врахуємо, що середня атомова густина локальної ділянки зразка ρ_0 є сумою парціяльних атомових густин різних хемічних елементів ρ_{0i} , тобто

$$\rho_0 = \sum_{i=1}^m \rho_{0i},$$
(7)

де *m* — кількість різних хемічних елементів у складі локальної області. При цьому

$$\rho_{0i} = c_i \rho_0, \tag{8}$$

де c_i — відносні частки хемічних елементів у вибраній локальній ділянці. Тоді в її об'ємі товщиною dx в розсіюванні електронів братимуть участь $S\rho_{0i}dx$ атомів *i*-го хемічного елементу, де S — площа основи (круг з діяметром d_p) локальної ділянки. У такому випадку при проходженні електронного жмута даної области зразка відношення зміни потоку пружньо розсіяних на даних атомах за межі апертурної діяфраґми електронів dn_i до загального потоку не розсіяних електронів n буде дорівнювати

$$\frac{dn_i}{n} = -\frac{\sigma_{\alpha i}\rho_{0i}Sdx}{S} = -\sigma_{\alpha i}\rho_{0i}dx, \qquad (9)$$

де σ_{ai} — ефективний переріз пружнього розсіяння електронів атомами *i*-го хемічного елементу. Знак «мінус» у даному співвідношенні вказує на зменшення потоку ще нерозсіяних електронів при проходженні електронним жмутом ділянки зразка товщини dx.

Подальший розгляд процесу розсіяння електронів у даному випадку можна виконати лише ввівши усереднений за всіма хемічними елементами локальної області зразка переріз розсіяння на один атом $\overline{\sigma}_{\alpha}$. З нашої точки зору таку процедуру можна коректно виконати, використовуючи фізичну сутність процесу пружнього некогерентного розсіяння: загальна інтенсивність розсіяння електронів дорівнює сумі розсіювань електронів на атомах різних хемічних елементів. Тобто

$$\frac{dn}{n} = \sum_{i=1}^{m} \frac{dn_i}{n} = -\sum_{i=1}^{m} (\sigma_{\alpha i} \rho_{0i}) dx.$$
 (10)

Враховуючи співвідношення (8), одержаний вираз можна подати як

$$\frac{dn}{n} = -\sum_{i=1}^{m} (\sigma_{\alpha i} c_i \rho_0) dx = -\rho_0 \sum_{i=1}^{m} (c_i \sigma_{\alpha i}) dx.$$
(11)

З останнього співвідношення випливає, що усереднений за всіма хемічними елементами локальної ділянки зразка переріз розсіяння на один атом $\overline{\sigma}_{\alpha}$ зручно задати у вигляді:

$$\overline{\sigma}_{\alpha} = \sum_{i=1}^{m} c_i \sigma_{\alpha i}.$$
 (12)

Після підстановки (12) в (11) та інтеґрування одержаного диференційного рівнання з врахуванням крайових умов на межі падіння на зразок зондувального жмута, одержуємо залежність величини потоку ще нерозсіяних локальною ділянкою за межі апертурної діяфраґми електронів від пройденої ними товщини локальної ділянки зразка x:

$$n = n_0 \exp(-\overline{\sigma}_{\alpha} \rho_0 x), \qquad (13)$$

де n_0 — спадний потік електронів зондувального жмута.

Таким чином, інтенсивність електронного жмута, який формує ЕМ-зображення локальної ділянки за рахунок пружнього некогерентного розсіяння, буде визначатися потоком пружньо нерозсіяних за межі апертурної діяфраґми електронів на виході з цієї локальної ділянки. Тому можна записати, що ця інтенсивність дорівнює

$$I = I_0 \exp(-\overline{\sigma}_{\alpha} \rho_0 d) \,. \tag{14}$$

Одержане співвідношення показує, що величина інтенсивности електронного жмута, який формує елемент ЕМ-зображення об'єкта за рахунок пружнього некогерентного розсіяння, визначається добутком трьох основних параметрів: середньою атомовою густиною локальної ділянки зразка ρ_0 , усередненим перерізом пружнього розсіяння електронів атомами локальної ділянки $\overline{\sigma}_{\alpha}$ та геометричною товщиною цієї ділянки d. У практичній електронній мікроскопії кожен з даних параметрів може змінюватися при переході від однієї локальної ділянки об'єкта до іншої, даючи тим самим свій внесок у контраст ЕМ-зображення. При цьому зміна $\overline{\sigma}_{\alpha}$ відбувається за рахунок варіяції хемічного складу локальних ділянок, зміна ρ_0 — як за рахунок варіяції хемічного складу, так і за рахунок варіяції структури атомової сітки локальних ділянок, а зміна d — за рахунок особливостей наноструктури атомової матриці і топології поверхні зразка. Пружнє когерентне розсіяння. Другим за роллю у формуванні контрасту ЕМ-зображень є пружнє когерентне розсіяння. Його величина задається введеною в співвідношенні (4) функцією $I_{\pi\kappa}(s)$. Ця функція містить дві складові частини. Перша з них визначає, так зване, «нульове» розсіяння електронів, основна інтенсивність якого зосереджена при дуже малих модулях вектора розсіяння s [7]. Характер розподілу інтенсивности розсіяних електронів у цій області визначається геометричною формою та геометричними розмірами нанонеоднорідностей того об'єму зразка, який опромінюється електронами і, відповідно, бере участь у формуванні дифракційної картини. Оскільки різні локальні ділянки об'єкта ЕМ-досліджень входять в один і той же спільний опромінений об'єм, то «нульові» внески в інтенсивність пружнього когерентного розсіяння електронів різними локальними ділянками будуть однакові. В такому випадку вони не будуть впливати на контраст ЕМ-зображень і надалі можуть не враховуватись.

Друга складова відображає безпосередньо ефекти інтерференції когерентно розсіяних на атомах електронів і задається структурним фактором S(s) атомової сітки. Тому для аморфних речовин з досить високою точністю можна вважати, що контраст ЕМ-зображень за рахунок пружнього когерентного розсіяння електронів буде однозначно визначатися відмінностями структурного фактора різних локальних ділянок зразка. Він задається для аморфних речовин структурою невпорядкованої атомової сітки даної локальної ділянки. Тому величина зміни S(s) при переході від однієї локальної ділянки до іншої будуть визначатися величиною відмінностей параметрів ближнього і, особливо, середнього порядку різних локальних областей досліджуваного об'єкту. І саме такі варіяції надаватимуть свій внесок у контраст ЕМ-зображень електронів.

Тоді, в межах прийнятих вище наближень і з врахуванням співвідношень (2), (4) та (6), ефективний переріз пружнього когерентного розсіяння електронів атомами локальної ділянки зразка складного хемічного складу задається простим співвідношенням:

$$\sigma'_{\alpha} = \int_{\alpha}^{\infty} F^2(s) S(s) ds .$$
 (15)

Функція S(s) визначається експериментально шляхом реєстрації електронограм від досліджуваних об'єктів. З точки зору формування контрасту, нас цікавить відмінність розсіяння електронів різними локальними ділянками одного і того ж зразка. Мінімальні розміри таких локальних ділянок у сучасних наноматеріялах і наносистемах складають одиниці нанометрів. Тому для використання співвідношення (15) слід застосовувати електронографічні методи, які дозволяють одержувати окремі дифрактограми з областей зразка нанометрових розмірів. Даним вимогам відповідає метода електронної дифракції з сильним фокусуванням електронного жмута, розроблена в роботах [8, 9]. Вона дозволяє досліджувати нанообласті розміром більше 2 нм. Такі області зразка можуть бути точно виділені на ЕМ-зображенні. Крім електронограм, від таких локальних нанообластей можна також одержати спектри втрати енергії електронів та характеристичні Рентґенові спектри. За експериментальними даними також можливе виконання розрахунків функцій радіяльного розподілу.

Одержавши електронограми в режимі сильного фокусування з різних локальних нанообластей об'єкта, можна легко розрахувати їх структурні фактори S(s) і, відповідно, одержати по співвідношенню (15) диференційні перерізи когерентного пружнього розсіяння електронів від цих локальних областей. В результаті стає можливим розрахунок внеску в контраст ЕМ-зображень відмінностей атомової структури аморфних зразків, який буде визначатися потоком дифрагованих електронів, що пройшли через апертурну діяфраґму. При цьому інтенсивність елементу зображення локальної ділянки за рахунок пружнього когерентного розсіяння можна вважати пропорційним величині

$$\int_{0}^{\infty} F^{2}(s)S(s)ds - \sigma'_{\alpha} = \int_{0}^{\alpha} F^{2}(s)S(s)ds.$$
(16)

Застосування даного виразу вимагає точного визначення функції S(s) в малокутовій області розсіяння електронів при $s < \alpha$. Саме в цій ділянці електронограми мають високу інтенсивність, що суттєво може впливати на результат аналізи контрасту.

Непружній фон. При визначенні структурних факторів локальних ділянок аморфних об'єктів S(s) методами електронної дифракції одночасно можна одержати і функції розподілу в оберненому просторі непружнього фону $\varphi(s)$ [10]. Тоді, використовуючи ті ж підходи, що і для виведення співвідношення (16), легко можна одержати величину внеску в контраст ЕМ-зображень загального шумового фону. При цьому зміна інтенсивности елементів зображень локальних ділянок об'єкта буде пропорційна зміні величини інтеґрала:

 $\int_{0} \phi(s) ds$. Тобто, аналізуючи дифрактограми від різних локальних

ділянок, слід визначати як структурні фактори цих ділянок S(s), так і їхні функції фону $\varphi(s)$. За відмінностями останніх і виявляються впливи непружнього фону на контраст ЕМ-зображень.

Таким чином, при вивченні процесів формування контрасту ЕМзображень від аморфних речовин слід використовувати найпростіші елементи теорії дифракційного контрасту. І основним з них є ха-

Рис. 3. ЕМ-зображення різних типів структури матриці:аморфних плівок $Ge_{33}Se_{67}$ (*a*) і $Ge_{16}Sb_{24}Se_{60}$ (*б*) та стекол $Ge_7As_{32}S_{61}$ (*b*) і As_2S_3 (*z*).

рактер розподілу інтенсивности дифракційної картини при малих кутах у межах апертурної діяфраґми. У практичному застосуванні одержаних результатів актуальними є кілька найбільш загальних випадків.

1. ЕМ-зображення аморфного об'єкта «на просвіт» є однорідним, коли контраст між окремими ділянками не перевищує кількох відсотків. Параметри структури такої аморфної матриці визначаються безпосередньою аналізою зображення (рис. 3, *a*).

2. В об'єкті виявляються необмежені чіткими контурами неоднорідності матриці, статистично випадково розподілені в площині зображення (рис. 3, б). Вивчення таких зображень вимагає виділення трьох складових контрасту (див. співвідношення (14)): геометричної товщини, хемічного складу та атомової густини локальних ділянок. Перший внесок визначається додатковим дослідженням поверхневого рельєфу зразка методами сканівної електронної мікроскопії або атомово-силової мікроскопії. Варіяції хемічного складу в різних ділянках неоднорідностей можна визначити методами локальної Рентґенової мікроаналізи. Якщо вони більші за похибки вимірювань, то слід для локальних ділянок з різним хемічним складом при допомозі стандартних таблиць атомових факторів розсіяння електронів розрахувати функції (3). Тоді внесок у контраст зображення змін хемічного складу буде визначатися ріжницею інтеґ-

ралів $\int_{0}^{\alpha} \sum_{i=1}^{N} F_{i}^{2}(s) ds$ для різних елементів зображення. Вилучивши із

загального контрасту EM-зображення визначені вище два внески, одержують третю складову контрасту, зумовлену відмінностями середньої атомової густини локальних ділянок об'єкта.

3. Об'єкт містить чітко виділені включення, які по формі відповідають можливості фазового розділення в аморфній матриці (рис. 3, *в*). На першому етапі аналізи таких зображень доцільно виконати нанодифракційні дослідження фазових включень та довкільної їх базової матриці. За одержаними результатами розраховуються відповідні структурні фактори цих характерних ділянок і за допомогою співвідношення (16) визначається внесок когерентного пружнього розсіяння в ЕМ-контраст міжфазовими включеннями і базовою матрицею. Після цього кількісна аналіза контрасту ЕМ-зображення такого об'єкту виконується за загальною схемою, наведеною в пункті 2.

4. Найбільш складний випадок відповідає об'єкту, в матриці якого поєднуються всі описані вище типи неоднорідностей (рис. 3, *г*). Зрозуміло, що кількісна аналіза контрасту зображень таких об'єктів має містити всі зазначені вище етапи з відокремленням внеску в контраст всіх проаналізованих вище структурних складових неоднорідностей аморфної матриці.

4. ВИСНОВКИ

Аналізу EM-зображень аморфних матеріялів та наносистем складного хемічного складу слід виконувати з врахуванням умов утворення як амплітудного, так і дифракційного контрасту. Для цього необхідно розглядати загальні процеси розсіяння електронної хвилі зондувального жмута на всіх атомах об'єкта з наступною їх інтерференцією між собою. При такому розгляді слід виділяти три складові розсіяння електронів, які відповідають за формування контрасту EM-зображень: пружнє некогерентне, пружнє когерентне та непружній шумовий фон.

Варіяції інтенсивности EM-зображень за рахунок пружнього некогерентного розсіяння визначаються розподілом середньої атомової густини в локальних ділянках досліджуваного зразка, змінами усередненого по хемічному складу перерізу пружнього розсіяння електронів атомами локальних ділянок та відхиленнями геометричної товщини цих ділянок від середньої.

Внесок пружнього когерентного розсіяння в контраст EM-зображень обумовлюється відмінностями структури атомової сітки різних локальних ділянок і визначається за відмінностями структурних факторів даних ділянок у тій частині оберненого простору, який обмежений апертурною діяфраґмою. Аналогічно визначається і внесок у контраст непружнього фону, але при цьому аналізуються не структурні фактори, а криві розподілу такого фону в області апертурної діяфраґми.

ЦИТОВАНА ЛІТЕРАТУРА

- А. В. Смирнова, Г. А. Кокорин, С. М. Полонская, В. В. Яровой, З. В. Баранцева, В. Н. Бродова, Т. Ф. Мещеринова, И. А. Прокофьева, Электронная микроскопия в металловедении. Справочник (Москва: Металлургия: 1985).
- 2. Г. Томас, М. Дж. Гориндж, *Просвечивающая электронная микроскопия материалов* (Москва: Наука: 1983).
- А. Н. Пилянкевич, Просвечивающая электронная микроскопия (Киев: Наукова думка: 1975).
- 4. Ю. А. Куницький, Я. І. Купина, Електронна мікроскопія: Навчальний посібник (Київ: Либідь: 1998).
- В. П. Іваницький, Механізми формування стохастично неоднорідної структури аморфних халькогенідів систем А^{IV}-В^V-С^{VI} (Дис. ... докт. фіз.мат. наук) (Ужгород: УжНУ: 2007).
- 6. Л. И. Татаринова, Электронография аморфных веществ (Москва: Наука: 1972).
- 7. В. Н. Филиппович, Журнал теоретической физики, 25, № 9: 1604 (1955).
- 8. D. Cockayne, D McKenzie, and D. Muller, *Microan., Microscopy, Microstruc*ture, 2: 359 (1991).
- 9. Y. Hirotsu, M. Ishimaru et al., J. Electron Microscopy, 50, No. 6: 435 (2001).
- А. Ф. Скрышевский, Структурный анализ жидкостей и аморфных тел (Москва: Высшая школа: 1980).