© 2010 ІМФ (Інститут металофізики ім. Г. В. Курдюмова НАН України) Надруковано в Україні. Фотокопіювання дозволено тільки відповідно до ліцензії

PACS numbers: 61.05.cp, 61.43.Bn, 61.43.Dq, 61.46.Hk, 81.07.Bc

Структура стопу $Zr_{50}Cu_{30}Al_{10}Ni_{10}$ в аморфному та нанокристалічному станах

О. Б. Мельник, Ю. А. Куницький^{*}, А. Б. Шевченко, М. Ю. Барабаш^{*}

Інститут металофізики ім. Г.В.Курдюмова НАН України, бульв. Акад. Вернадського, 36, 03680, МСП, Київ-142, Україна, *Технічний центр НАН України, вул. Покровська, 13, 04070 Київ, Україна

Гартуванням з розтопу одержано масивні аморфні та нанокристалічні зразки стопу $Zr_{50}Cu_{30}Al_{10}Ni_{10}$. Оберненою методою Монте-Карло виконано реконструкцію атомарної будови аморфного $Zr_{50}Cu_{30}Al_{10}Ni_{10}$ на основі експериментальних дифракційних даних. За допомогою аналізи координаційних многогранників встановлено, що аморфний стан характеризується мікронеоднорідною будовою, яка обумовлена наявністю різних типів атомового упорядкування; серед них виявлено кластери з близьким порядком, подібним до кристалічних Zr_2Ni та Zr_2Cu . Аналогічні типи нанокристалів (Zr_2Ni з розмірами 6,83 нм, $Zr_2Cu - 4,31$ нм) ідентифіковано в нанокристалічному стані Рітвелдовою методою, що свідчить про спадковість аморфного і нанокристалічного станів.

Bulk amorphous and nanocrystalline samples of the $Zr_{50}Cu_{30}Al_{10}Ni_{10}$ alloy are fabricated by quenching from the melt. Reconstruction of the atomic structure of amorphous $Zr_{50}Cu_{30}Al_{10}Ni_{10}$ is carried out on the basis of the experimental diffraction data by reverse Monte Carlo method. The amorphous state is characterized by microheterogeneous structure, which is caused by the presence of different types of atomic ordering. Clusters with short-range order similar to crystalline Zr_2Ni and Zr_2Cu are revealed by analyzing of the coordination polyhedra. Similar types of nanocrystals (of Zr_2Ni with sizes of 6.83 nm, of Zr_2Cu with sizes of 4.31 nm) are identified in the nanocrystalline state by the Rietveld method. This fact testifies the heredity of amorphous and nanocrystalline states.

Закалкой из расплава получены массивные аморфные и нанокристаллические образцы сплава $Zr_{50}Cu_{30}Al_{10}Ni_{10}$. Обратным методом Монте-Карло выполнена реконструкция атомного строения аморфного $Zr_{50}Cu_{30}Al_{10}Ni_{10}$ на основе экспериментальных дифракционных данных. С помощью ана-

503

лиза координационных многогранников установлено, что аморфное состояние характеризуется микронеоднородным строением, которое обусловлено существованием различных типов атомного упорядочения; среди них выявлены кластеры с ближним порядком, подобным кристаллическим Zr_2Ni и Zr_2Cu . Аналогичные типы нанокристаллов (Zr_2Ni с размерами 6,83 нм, $Zr_2Cu - 4,31$ нм) идентифицированы в нанокристаллическом состоянии методом Ритвелда, что свидетельствует о наследственности аморфного и нанокристаллического состояний.

Ключові слова: аморфний стан, близький порядок, обернена метода Монте-Карло, многогранники Вороного, кластер.

(Одержано 5 березня 2010 р.)

1. ВСТУП

Особливості структурного стану аморфних стопів (наявність лише близького порядку та відсутність дисльокацій) обумовлюють суттєве підвищення механічних та антикорозійних властивостей цих матеріялів у порівнянні з їх кристалічними аналогами. Для досягнення аморфного стану часто використовують методу швидкого гартування з розтопу. Таким чином одержано аморфні плівки для тисяч різноманітних металічних систем. Головним недоліком плівкових об'єктів є складність формування із них масивних матеріялів. Дана проблема вирішується у випадку складів з підвищеною склоутворювальною здатністю, для яких легко одержувати об'ємні аморфні стопи (ОАС) при невеликих швидкостях охолодження. Серед ОАС важливе місце займають стопи на основі цирконію. Багатокомпонентні цирконійові ОАС значно переважають криці та найкращі кристалічні титанові стопи по відношенню межі міцности до ваги матеріялу, а також характеризуються стійкістю до корозії і високою межею пружних деформацій [1–4]. Недоліком ОАС є низька пластичність. Ця характеристика може бути покращена шляхом їх переводу з аморфного стану в аморфно-кристалічний. Матеріял, який складається з аморфної матриці та нанокристалів в ній, як правило, зберігає міцність вихідного аморфного стопу та має підвищену пластичність [5, 6]. Аморфно-кристалічного стану можна досягти при відпалі базового АС, або шляхом гартування з невисокою швидкістю охолодження, яка не дає змоги одержати повністю аморфний стоп. Важливим моментом синтези аморфних та нанокристалічних матеріялів з заданими властивостями є відпрацювання режимів одержання з паралельним контролем їх структурного стану.

Дану роботу присвячено одержанню багатокомпонентного цирконійового стопу $Zr_{50}Cu_{30}Al_{10}Ni_{10}$ в аморфному та аморфно-кристалічному станах та дослідженню їх атомової структури.

2. ПРИГОТУВАННЯ ЗРАЗКІВ

Вихідний кристалічний стоп готувався з високо чистих компонент за допомогою дугового топлення з наступним перетопленням для досягнення однорідности. Далі зливок вагою 100 г розтопляли методою індукційного нагрівання. При відключенні індуктора розтоп під дією сили тяжіння падав у форму і заповнював її. Для реґулювання швидкости охолодження були виготовлені форми з міді та графіту з діяметрами 4 та 10 мм відповідно. На рисунках 1, 2 наведено циліндричні зливки стопу $Zr_{50}Cu_{30}Al_{10}Ni_{10}$ одержані гартуванням у мідну та графітову форми. Вплив матеріялу форми на структурний стан одержаних зразків ідентифікувався рентґенографічно. Загальний вигляд дифрактограм свідчить, що при гартуванні у мідну форму одержано аморфний (рис. 3, *a*) стрижень діяметром 4 мм, а за допомогою гартування у графітову форму виготовлено аморфно-нанокристалічний (рис. 3, *б*) зразок діяметром 10 мм.

3. ДОСЛІДЖЕННЯ БЛИЗЬКОГО ПОРЯДКУ В Zr₅₀Cu₃₀Al₁₀Ni₁₀

Найбільший об'єм інформації про атомову будову неупорядкованих систем несуть дифракційні дані. Звичайні методики аналізи результатів дифракційного експерименту дозволяють одержати усереднену по компонентах і напрямкам структурну інформацію у вигляді повних функцій радіяльного розподілу атомів (ФРРА) і структурних факторів (СФ). Для більш детального вивчення близького порядку необхідно виконувати модельну реконструкцію на базі експериментальних даних. Найкращим способом вирішення цієї задачі є використання оберненої методи Монте-Карло (ОМК) [7], що за експериментальними ФРРА і СФ дозволяє побудувати тривимірну картину розташування атомів. У даному дослідженні ОМК використовувався при реконструкції й аналізі атомарної будови ОАС $Zr_{50}Cu_{30}Al_{10}Ni_{10}$.

Рис. 1. Аморфний стрижень $Zr_{50}Cu_{30}Al_{10}Ni_{10}$ (*d* = 4 мм).

Рис. 2. Нанокристалічний стрижень $Zr_{50}Cu_{30}Al_{10}Ni_{10}$ (d = 10 мм).

Рис. 3. Дифрактограми від стопу $Zr_{50}Cu_{30}Al_{10}Ni_{10}$ в аморфному (*a*) і нанокристалічному (*б*) станах та профілі розсіяння від нанокристалів ?r₂Cu, Zr_2Ni (*b*).

Структура аморфного стопу була досліджена рентґенографічно. Зразки стопу знімалися на Рентґеновій уставі ДРОН-З (Мо K_{α} -випромінення) у режимі покрокового сканування. Монохроматизація здійснювалася за допомогою графітового кристала-монохроматора, встановленого на первинному жмуті. Дифракційні криві нормувалися і по них обчислювалися структурні фактори (СФ) $a^e(S)$ в інтервалі абсолютних величин векторів розсіяння 16 нм⁻¹ < S < 120 нм⁻¹ відповідно до стандартної методики. На основі $a^e(S)$ розраховувались експериментальні ФРРА $G^e(R)$ за допомогою Фур'є-перетвору.

У якості моделю розглядалася система з N = 2000 атомів, що знаходилися в кубічній комірці, на яку накладалися періодичні граничні умови. Розміри комірки обиралися таким чином, щоб густина модельної системи дорівнювала експериментальній густині аморфного стопу. Реконструкція полягала у визначенні координат атомів.

Рис. 4. Експериментальна (_____) і модельна (____) фРРА аморфного стопу $Zr_{50}Cu_{30}Al_{10}Ni_{10}$.

Рис. 5. Фраґмент структури аморфного $Zr_{50}Cu_{30}Al_{10}Ni_{10}$, одержаний в результаті реконструкції за дифракційними даними.

Для цього використовувалася обернена методика Монте-Карло. Моделювання зводилося до мінімізації функції $\lambda(X_n)$ по параметрах X_n (n = 1, ..., 3N), що означають координати атомів в основній комірці:

$$\lambda(X_n) = \sum_{k=1}^{K} \frac{[G^e(S_k) - G^e(R_k, X_n)]^2}{\sigma^2(S_k)},$$
(1)

де R_k (k = 1,...,K) — точки в яких протабульовано експериментальну ФРРА — $G^e(R_k)$. $G^e(R_k,X_n)$ — ФРРА модельної системи розраховувався в інтервалі 0,005 нм < R_k < 1,25 нм із кроком 0,005 нм. При мінімізації функції $\lambda(X_n)$ задавалися наступні мінімальні віддалі між атомами: $r_{ZrZr} = 0,26$ нм; $r_{ZrCu} = 0,238$ нм; $r_{ZrAl} = 0,253$ нм; $r_{ZrNi} = 0,234$ нм; $r_{CuCu} = 0,216$ нм; $r_{CuAl} = 0,231$ нм; $r_{CuNi} = 0,212$ нм; $r_{AlAl} = 0,246$ нм;. $r_{AlNi} = 0,227$ нм; $r_{NiNi} = 0,208$ нм. На рисунку 4 наведені експериментальна і модельна G(R). Між ними спостерігається відповідність. Фраґмент атомарної структури для $Zr_{50}Cu_{30}Al_{10}Ni_{10}$, одержаної в результаті реконструкції, зображено на рис. 5.

Характер атомового порядку в моделях досліджувався шляхом побудови многогранників Вороного (МВ) для багатокомпонентних систем (бралися наступні радіюси атомів: $r_{\rm Zr} = 0,150$ нм, $r_{\rm Cu} = 0,128$ нм, $r_{\rm Al} = 0,143$ нм, $r_{\rm Ni} = 0,124$ нм) [8]. Кожен многогранник описується числами $(n_3, n_4, n_5, ...)$, що відповідають числу трикутних, чотирикутних і т.д. граней. По статистиці МВ можна судити про типи впорядкування існуючі у системі. Якщо розглядати оточення атомів Си, то можна стверджувати, що переважно вони знаходяться усередині MB-(0,6,0,8) чи конфіґурацій, які можна одержати із них незначними спотвореннями. Це свідчить про те, що оточення Си є, у значній мірі, хемічно впорядкованим за типом кристалічного Zr₂Cu. Серед многогранників, побудованих на атомах Ni, переважають MB-(0,4,4,6), які характерні для Zr₂Ni. В областях, де атоми Cu та Ni відсутні, ідентифіковані структури з ікосаедричним упорядкуванням MB-(0,0,12). Таким чином, ОАС $Zr_{50}Cu_{30}Al_{10}Ni_{10}$ характеризуються мікрогетерогенною будовою, що утворена з кластерами з різним льокальним порядком.

Для фазової аналізи нанокристалічного стопу $Zr_{50}Cu_{30}Al_{10}Ni_{10}$ застосовувалася повнопрофільна метода Рітвелда [9]. Розгляд виконувався на основі дифракційної картини від зразка діяметром 10 мм, яку одержано в Мо K_{α} -випроміненні (рис. 3, б). Ідентифіковано відбивання від кристалітів Zr_2Cu , Zr_2Ni . Профілі відбивань від кристалів апроксимувались за допомогою функцій псевдо-Войта. Для них кутова залежність ширини на напіввисоті (*B*) була задана відповідно до виразу Кагліотті:

$$B^{2} = w + v \tan \theta + u \tan^{2} \theta.$$
 (2)

Тут величини w, v, u розглядаються як підгінні параметри у методі Рітвелда. На рисунку 3, δ наведено експериментальний і розрахований профілі інтенсивности, що добре узгоджуються. Розрахований профіль складається з профілів від фаз Zr_2Cu та Zr_2Ni , які зображено на рис. 3, δ .

Розмір кристалітів (D) та їх деформація (ε) оцінювались на основі аналізи ширини відбивань (B), одержаних в результаті застосування методи Рітвелда. Використовувався формалізм Вільямсона– Холла, що описує кутову залежність цих величин:

$$B^{2}\cos^{2}\theta = (\lambda / D)^{2} + \varepsilon \sin^{2}\theta.$$
(3)

Встановлено, що нанокристали Zr_2Cu мають середній розмір D = 4,31 нм, а $Zr_2Ni - D = 6,83$ нм.

4. ВИСНОВКИ

Розвинуто методику одержання об'ємних аморфних та нанокристалічних металічних стопів шляхом гартування з різними швидкостями охолодження, що досягається вибором матеріялу форм. Для стопу $Zr_{50}Cu_{30}Al_{10}Ni_{10}$ одержано об'ємний аморфний (d = 4 мм) та нанокристалічний (d = 10 мм) стани.

Оберненою методою Монте-Карло за експериментальними рентґенодифракційними даними виконано реконструкцію структури аморфного стопу $Zr_{50}Cu_{30}Al_{10}Ni_{10}$. Аналіза розташування атомів за допомогою формалізму многогранників Вороного показав, що стоп характеризується мікронеоднорідною будовою. Виявлено кластери з Zr_2Ni та Zr_2Cu типами впорядкування.

В нанокристалічному $Zr_{50}Cu_{30}Al_{10}Ni_{10}$ методою Рітвельда ідентифіковано кристаліти Zr_2Cu , які мають середній розмір d = 4,31 нм та Zr_2Ni з середнім розміром d = 6,83 нм.

Існування неоднорідностей з подібним близьким порядком в аморфному та нанокристалічному $Zr_{50}Cu_{30}Al_{10}Ni_{10}$ свідчить про тісний взаємозв'язок цих станів.

ЦИТОВАНА ЛІТЕРАТУРА

- 1. Z. Zhang, F. Wu, G. He, and J. Eckert, J. Mater. Sci. Technol., 23: 747 (2007).
- H. Kato, T. Hirano, A. Matsuo, Y. Kawamura, and A. Inoue, Scripta Mater. 43, No. 6: 503 (2000).
- 3. L. C. Damonte, L. A. Mendoza-Zelis, S. Deledda, and J. Eckert, *Materials Science and Engineering*, 343: 194 (2003).
- 4. J. Shen, J. Zou, L. Ye, Z. P. Lu, D. W. Xing, M. Yan, and J. F. Sun, *Journal of Non-Crystalline Solids*, 351: 2519 (2005).
- 5. J. Lee, Y. Kim, J. Ahn et al., Acta Materialia, 52: 1525 (2004).
- 6. G. He, J. Eckert, W. Loser et al., Acta Materialia, 52: 3035 (2004).
- 7. R. L. McGreevy and L. Pusztai, Mol. Simulation, 1: 359 (1988).
- 8. R. E. Watson and L. H. Bennett, Phys. Rev. B, 43, No. 14: 11642 (1991).
- 9. R. A. Young, The Rietveld Method (Oxford University Press: 1993).