© 2010 ІМФ (Інститут металофізики ім. Г. В. Курдюмова НАН України) Надруковано в Україні. Фотокопіювання дозволено тільки відповідно до ліцензії

PACS numbers: 61.43.Hv, 61.48.Gh, 61.50.Ah, 61.50.Nw, 81.05.ue

Модель стереоизомеров — графена и нитрида бора

В. В. Гарбуз

Институт проблем материаловедения им. И. Н. Францевича НАН Украины, ул. Кржижановского, 3, 03680, ГСП, Киев, Украина

Предложена плоскостная модель пространственных изомеров графенового слоя углерода и нитрида бора, наноразмерных частиц t-C_r и t-BN_r, периметрически симметричная главной оси 6₃-порядка. Проведен сравнительный анализ геометрических (по Слэйтеру) и силовых (по Оллреду–Рохову) характеристик химической связи в плоскости sp^2 -гибридизации инертной поверхности и химически активного периметра атомов С, пары В и N, а также атомов Н и О. Модель содержит уровни: образования, упорядочения, периметрического гидролиза, дегидратации, потери стехиометрии по азоту, где B/N > 1, фрактальной фрагментации симметрично оси 3-порядка и полного разложения. Установлена зависимость состава и среднего диаметра частиц от степени центросимметричной макроциклизации частиц t-BN_r, соответствующая натуральному ряду целых чисел (n). Качественные экспериментальные данные РФА, ИК-спектрометрии, а также

Запропоновано плаский периметричний модель стереоізомерів графенового шару вуглецю та нітриду бору, нанорозмірних частинок t- C_r та t-BN_r, симетричний головній вісі 6_3 -порядку. Виконано порівняльну аналізу геометричних (за Слейтером) та силових (за Оллредом–Роховим) характеристик хемічного зв'язку в площині sp^2 -гібридизації інертної поверхні та хемічно активного периметра атомів С, пари В і N, а також атомів Н та O. Модель містить рівні: утворення, впорядкування, периметричної гідролізи, дегідратації, втрати стехіометрії по азоту, де B/N > 1, фрактальної фраґментації симетрично вісі З-го порядку та повного розкладу. Встановлено залежність складу та середнього діяметра частинок від ступеня центросиметричної макроциклізації частинок t-BN_r, що відповідає натуральному ряду цілих чисел (*n*). Якісні експериментальні дані РФА, ІЧспектрометрії, а також складу t-BN_r гармонійно узгоджуються у рамках запропонованого моделю.

The plane model of graphene layer of stereoisomers of carbon and boron nitride such as nanosize t-C_r and t-BN_r particles, which is perimetrically sym-

471

metric about main axis of the 6_3 -degree is proposed. Comparative analysis of the geometric (by Slater) and force (by Allreds–Rokhow) parameters of chemical bonding in plane of sp^2 -hybridization of the inert surface and reactionary active perimeter of C atoms, pair of B and N atoms, and H and O atoms. Model has several levels such as: formation, ordering, perimetrical hydrolysis, dehydration, losses of stoichiometry by nitrogen, where B/N > 1, fractal fragmentation symmetrically about third degree axis, and complete decomposition. Dependence of composition and average diameter of particles on degree of centrosymmetric macrocyclization of *t*-BN_r particles is revealed. This dependence corresponds to positive integers. Qualitative experimental data of x-ray analysis, IR-spectrometry and *t*-BN_r composition show close agreement within the framework of the presented model.

Ключевые слова: модель, стереоизомеры, графен, BN.

(Получено 15 апреля 2010 г.)

1. ВВЕДЕНИЕ

Наноразмерные порошки графитоподобного нитрида бора с трехмерной неупорядоченной (турбостратной) структурой t-BN_г являются сырьем для получения наноразмерных порошков наиболее плотной сфалеритоподобной фазы t-BN_г при высокотемпературном ударном сжатии по диффузному механизму фазового превращения [1].

Отсутствие отражений hkl и асимметрия полос отражения hk на рентгенограммах порошков свидетельствует о двухмерности структуры t-BN_r[2].

Увеличение степени трехмерной упорядоченности структуры t-BN_r приводит к увеличению выхода продуктов фазового превращения с вюрцитоподобной структурой BN_в при BTУС, проходящему по мартенситному механизму [2].

Двухмерность структуры сочетается с известными особенностями химического состава порошков *t*-BN_г. Они характеризуются заниженным содержанием массовой доли ($X_{\rm E}$, % масс.) основных элементов $X_{\rm B}$ и $X_{\rm N}$ по сравнению с расчетными данными ($X_{\rm Breop.}$ — 43,6% масс. и $X_{\rm Nreop.}$ — 56,4% масс.) соединения BN. Содержание кислорода в стехиометрических и избыточных по бору порошках *t*-BN_г, где соотношение $X_{\rm B}/X_{\rm N} \ge 0,771$ составляет $X_{\rm O} = 3,5-19,0\%$ масс., водорода и углерода $X_{\rm C}$ и $X_{\rm H} \sim 0,40\pm0,20\%$ масс. [3]. ИКспектры образцов содержат полосы поглощения внутриплоскостных и межплоскостных колебаний кристаллической решетки *t*-BN_г v(BN), асимметричных и симметричных колебаний v(OBO) и v(OBN), деформационных и валентных колебаний δ (NH) и δ (OH), v(NH) и v(OH) [4, 5]). Посторонних фаз и твердых растворов в порошках *t*-BN_г по данным рентгенографии [6] обнаружено не было. Влияние B₂O₃, других фаз, твердых растворов, примесей кислорода на фазовые превращения BN_r было изучено при высокотемпературном статическом сжатии (BTCC) [7–9], а также в условиях BTУC [5, 6]. Полученные результаты имеют адекватный кинетический характер причин, вызывающих эти превращения. Так введение B_2O_3 в исходную шихту *t*-BN_r при BTУC в отличие от BTCC [8], резко снизило выход плотной фазы [5].

В связи с этим представляло интерес обобщить полученные результаты в рамках единой модели, а также установить связь величины двухмерных частиц и столь необычного состава порошков t-BN_r с некоторым существенным параметром структуры этих частиц.

В настоящей работе представлена плоская модель пространственных изомеров структурных единиц (СЕ) наноразмерной системы (НРС) — толщиной моноатомного слоя (MAC) *t*-C_r и *t*-BN_r.

Рассмотрены сравнительные геометрические и силовые характеристики химической связи внутренних и краевых атомов стереоизомеров углерода и нитрида бора, (MAC) *t*-C_r и *t*-BN_r.

Обсуждены электростатические предпосылки трехмерного упорядочения графеновых слоев t- C_r и нескольких МАС t- BN_r в графитоподобный наноразмерный пакет (ГНРП) t- C_r и t- BN_r . Показаны причины стабилизации разупорядоченной структуры t- BN_r .

Предложен параметр макроциклизации n, который связывает размеры (MAC) t-BN_г и его химический состав.

2. ПОСТРОЕНИЕ МОДЕЛИ

В качестве исходных, при решении поставленной задачи, были использованы данные и положения 1)–3) о структуре и свойствах стереоизомера t-BN_r — графенового слоя t-C_r в активированных углях, приведенные в работах [11–13]:

1) необратимая адсорбция кислорода графеном, прошедшего вакуумную термическую обработку (ВТО), осуществляется выше минус 40° С; последующее выделение кислорода происходит в виде CO/CO₂;

2) поверхность графена *t*-С_г является химически инертной;

3) химическое взаимодействие кислорода (и других элементов) происходит с периферийными атомами графена.

При построении модели был использован главный элемент симметрии пространственных групп $C_r \bar{p} 6_3 / mmc$ и $BN_r p 6_3 / mmc - ocb 6_3$, перпендикулярная графеновому слою *t*- C_r и MAC *t*- BN_r (рис. 1 *a*, *б*).

Как видно из рис. 1, a, все химически активные атомы (радикалы с неспаренными электронами [11]) графенового слоя, вписанного в правильный шестиугольник, принадлежат геометрическому месту точек сторон этого шестиугольника. МАС t-С_г — продукт радикальных цепных реакций полимеризации атомов в виде сопряженных концентрических макроциклов в плоскости sp^2 -гибридизации уг-

Рис. 1. Схемы моделей плоских частиц t-С_г и t-BN со степенью макроциклизации n = 2.

лерода [14].

По месту нахождения эти атомы принадлежат внешнему периметру (*p*) шестиугольника МАС t-С_г. В общем случае $p \sim \pi d_{a.cp.}$, где $d_{a.cp.}$ — средний диаметр, который определяется, как основная размерная характеристика плоских частиц МАС t-С_г (нм) по данным РФА в области когерентности [2].

С учетом степени макроциклизации (СМЦ) графена, численно равной 0, 1, 2, ..., n (рис. 1, a), размер диагонали частицы слагается из суммы внутри слоевых рентгенографических параметров «a» (нм). Средний диаметр графена при этом меньше диагонали на величину $\cos\beta$, как катет и гипотенуза в прямоугольном треугольнике, составляющими угол 30'.

Аналитическое выражение величины среднего диаметра частицы графена имеет вид:

$$d_{a.cn} = a\cos\beta(2n+1). \tag{1}$$

Число атомов углерода, составляющих частицу t-С_г, подчиняется закону арифметической прогрессии, где

$$N_{\rm (C)} = 6\Sigma(2n+1).$$
 (2)

Максимальное количество мостиковых атомов кислорода (2–), связывающих неспаренные электроны периметрических атомов углерода, увеличивается по уравнению прямой линии и равно:

$$N_{(0)} = 6n.$$
 (3)

Молекулярная масса оксида графена равна:

$$M_{t-C_n} = N_{(C)}A_{(C)} + N_{(O)}A_{(O)}, \qquad (4)$$

475

где $A_{(C)}$ и $A_{(O)}$ — атомные массы углерода и кислорода.

Переменный в зависимости от n состав и размер оксида графена вычисляется из уравнения (1), а также

$$X_{\rm C} = N_{\rm (C)} A_{\rm (C)} \cdot 100\% / M_{t-{\rm C}_{\rm r}},\tag{5}$$

$$X_{\rm O} = N_{\rm (O)} A_{\rm (O)} \cdot 100 \% / M_{t-{\rm C}_{\rm r}},\tag{6}$$

где $X_{\rm C}$ и $X_{\rm O}$ — массовые доли (масс.%) углерода и кислорода со-ответственно.

Очевидно, использование уравнений аналогичных (1), (5) и (6) переводит модель в целом из графической формы в вычислительную. Это дает возможность при необходимости изучить вычислительными методами состав, размеры и технологические свойства реальных материалов с минимальным объемом данных литературы или эксперимента. Вычисление позволило обнаружить явление размерного фактора состава плоских, изоструктурных частиц оксида графена (табл. 1) и нитрида бора, которое внешне похоже на размерный фак-

ТАБЛИЦА 1. Зависимость содержания кислорода и размера частиц от степени макроциклизации (СМЦ) графена.

№№ пп.	Степень макроциклизации	$X_{ m o}\pm 0,1\%$ (масс. доля)	$d_{ m a.cp.}$, нм
1	0	0	0,2
2	1	25,0	0,7
3	2	19,5	1,5
4	3	15,4	2,4
5	4	12,6	3,3
6	5	10,6	4,2
7	6	9,2	5,0
8	7	8,1	5,9
9	8	7,2	6,8
10	9	6,5	7,7
11	10	5,9	8,6
12	11	5,5	9,4
13	13	4,7	11,2
14	15	4,1	12,9
15	17	3,7	14,7
16	19	3,3	16,4
17	21	3,0	18,2

тор физических свойств наносистем по Гляйтеру [15].

Размерный фактор состава является достаточным условием стабилизации периметра двухмерных частиц за счет присоединения кислорода (нового компонента). Необходимым условием стабильности графена t-С_г и его изомеров является положение 2) [11] инертность поверхности в плоскости sp^2 -гибридизации образующих атомов.

Графитоподобный наноразмерный пакет ГНРП t-С_г [16] состоит из нескольких MAC t-С_г, как результат их трехмерного упорядочения и связывания части неспаренных электронов периметрических углеродных радикалов. Оставшиеся химически активные атомы углерода находятся на боковой поверхности шестигранных призм, условно вставленных друг в друга на величину сдвига соседних MAC t-С_г [2], в виде фрагментированных шестиугольных периметров, отстоящих друг от друга на величину межслоевого расстояния, с толщиной MAC t-С_г.

Отсюда складывается некоторая закономерность уровней существования определенных систем.

Стабильность наноразмерной системы в *k*-мерном пространстве обусловлена заключением собственных активных центров в геометрическое место точек (*k* – 1)-мерного пространства.

Для объемных систем активные центры собраны на поверхности. В двухмерных системах с толщиной моноатомного слоя — на линии, фрагментированном периметре или цикле. Для одномерных систем, линейных и разветвляющихся — на концевых точках. В случае циклических, замкнутых систем — 0 (ноль). Для неизвестных точечных систем — неопределенность.

Образование t-BN_r из боратной кислоты и карбамида при ступенчатом нагревании в атмосфере аммиака имеет сложный многоступенчатый характер [17, 18]. С учетом исходных веществ и конечных продуктов реакции взаимодействие бора и азота можно представить, как процесс поликонденсации (MAC) t-BN_r связанный с декарбоксилированием в виде оксидов углерода (2+ и 4+) (CO/CO₂) и дегидратацией исходных продуктов продолжительное время при высоких температурах [3]. В этих условиях, наряду с параллельными реакциями [3], возможно прохождение обратных процессов, таких как взаимодействие с перегретыми парами воды, частичное температурное гидролитическое разложение продуктов реакции, особенно периферийных атомов бора и азота.

Поликонденсация MAC t-BN_г (с выделением газообразных веществ), происходит в виде концентрических сопряженных макроциклов атомов В и N в плоскости, пространственно аналогичной графеновому слою t-C_г, симметрично главной оси 6_3 , перпендикулярной этой плоскости.

Схематическое изображение МАС *t*-BN_г с двумя сопряженными

макроциклами (n=1, 2) представлено на рис. 1, б. За начало отсчета, состояние (n=0), выбрана условная шестичленная циклическая молекула $(BN)_3$ с последовательным чередованием атомов B(3+) и N(3-), как -B=N- и =B-N=. В возбужденном состоянии, при раскрытии двойных связей, она способна присоединить первый и последующие сопряженные макроциклы атомов бора и азота.

3. СВОЙСТВА МОДЕЛИ И ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Как видно из рис. 1, *a*, *б*, при условии концентрического роста перпендикулярно главной кристаллографической оси, MAC *t*-BN_г пространственно аналогичен MAC *t*-C_г. В силу гетероатомности слоя их свойства имеют различия, которые могут быть оценены с помощью величин электроотрицательностей атомов (χ_A) по Оллреду–Рохову [19]. Предложенная система χ_A имеет физический смысл силы, с которой атом с эффективным зарядом, вследствие экранирования ядра невалентными электронами, в данной степени окисления притягивает электрон на расстоянии ковалентного радиуса [19]:

$$\chi_A = Z_{\rm spph.} e^2 / r_{\rm KOB}^2. \tag{7}$$

Система атомно-ионных радиусов, предложенная Слэйтером в 1965 году, по данным [20] лучшим образом описывает геометрические свойства атомов в кристаллах с сильной химической связью, преимущественно ионного и ковалентного типа. Силовые (χ_A), а также геометрические (r_{aH}) характеристики атомов, принимающих участие в образовании МАС, представлены в табл. 2.

Как видно из табл. 2, полусумма ($\chi_{\rm B} + \chi_{\rm N}$)/2, а также ($r_{\rm au \ B} + r_{\rm au \ N}$)/2 лишь на 0,04 и 0,005 нм больше $\chi_{\rm C}$ и $r_{\rm au \ C}$ соответственно. Это указывает на близость как геометрических, так и силовых характеристик насыщенной химической связи поверхности MAC *t*-C_r и *t*-BN_r.

Различия свойств МАС *t*-С_г и *t*-BN_г сосредоточены главным обра-

№№ пп.	Название химического элемента	Степень окисления	Электро- отрицательность χ_A по Оллреду–Рохову [18]	Атомно-ионный радиус r _{ан} [нм] по Слэйтеру [19]
1	С	IV±	2,50	0,070
2	Ν	III-	3,07	0,065
3	В	III+	2,01	0,085
4	0	II–	3,50	0,060
5	Η	I+	2,20	0,025

ТАБЛИЦА 2. Геометрические (r_{au}) и силовые (χ_A) характеристики атомов, составляющих графеновый и моноатомный слой *t*-C_r и *t*-BN_r.

зом на их периферийных периметрах. Оба слоя являются электронейтральными в целом. Неспаренные электроны периферийных атомов углерода МАС t-C_г создают локальный краевой избыток электронной плотности Σ(δ-)_i, который вероятно является одним из исходных факторов чередования смещенных одноатомных слоев t-С_г при их трехмерном упорядочении в С_г по типу (ABAB ...) [2]. Моноатомный слой *t*-BN_г и его краевой периметр также в целом электронейтральны. В силу гетероатомного характера слоя и большой разницы в значениях $\Delta \chi_{(N-B)} = 1,06$ (табл.), химически активный фрагментированный периметр МАС t-BN_г состоит из шести участков с основанием сегментов в 60° чередующихся периметрических атомов азота $\Sigma(\delta+)_i$ и соответствующих атомов бора $\Sigma(\delta+)_i$ (рис. 1, δ). Отсутствие других химически активных атомов и функциональных групп создает благоприятные предпосылки перекрывания нескольких MAC *t*-BN_г в положениях взаимной нейтрализации периметрических областей (рис. 2) согласно уравнению

$$3\Sigma(\delta-)_i + 3\Sigma(\delta+)_i = 0.$$
(8)

Процесс взаимного стягивания MAC вследствие поворота на 60° вокруг главной оси получает дополнительный фактор упорядоче-

Рис. 2. Образование трехслойного графитоподобного наноразмерного пакета *t*-BN_г. Степень макроциклизации (СМЦ) частицы *n* = 1.

ния *t*-BN_г, который выводит трехмерный BN_г за рамки настоящей модели.

Упорядоченный трехмерный наноразмерный пакет BN_r, в результате взаимного связывания соседних фрагментированных периметров атомов бора и азота становится гидрофобным и химически инертным для присоединения других атомов и функциональных групп. Порошки графитоподобного BN_r отличаются реальной двухкомпонентностью, высокой стехиометричностью, химической инертностью и малым содержанием инородных технологических примесей.

Двухмерный МАС t-ВN_г напротив может быть подвержен многостадийному гидролитическому разложению: деформации внешнего периметра, фрагментации симметрично оси 3– порядка, а также гидролитической деструкции, которые будут обсуждены в последующих публикациях.

На первом этапе в присутствии молекул воды, не удаленных из зоны реакции продуктов поликонденсации, к периферийным атомам бора и азота (рис. 3, сегмент I) легко присоединяются гидроксильные группы $\Delta \chi_{(O-H)} = 1,30$ и протоны $\chi_H = 2,20$ соответственно (табл.; рис. 3, сегмент II). При этом в ИК-спектрах, кроме двух полос v(BN), наблюдаются полосы колебаний δ (NH) и δ (OH), v(NH) и

Рис. 3. Состояние периферийных атомов В и N в MAC *t*-BN_r. I) 1, 2 — в отсутствии атомов и групп присоединения и замещения. II) 3, 4 — гидроксилирование бора и гидрирование азота при взаимодействии с водой. III) 5, 6 — дегидратирование бора и термогидролиз азота (возникновение нестехиометрии по бору).

v(OH). Нагревание MAC *t*-BN_г приводит к дегидратированию периметра MAC *t*-BN_г. Частичное или полное отщепление OH-групп приводит к образованию мостиковых оксо- (-0-), $\chi_0/2 = 1,75$ или мостиковых OH-групп $\Delta\chi_{(0-H)}/2 = 0,65$ между периферийными атомами бора (рис. 3, сегмент III).

Дегидрирование иминогрупп (=N–H) на первой стадии стабилизирует имидогруппы за счет частичной делокализации неспаренного электрона азота (3–). Полный гидролиз атома азота и отщепление в виде аммиака, приводит к его замене на кислородный мостик. В результате возникает кажущаяся нестехиометрия бора по отношению к азоту, где B/N > 1 или $X_{\rm B}/X_{\rm N}$ > 0,771 (рис. 3, сегмент III). В ИК-спектрах при этом наблюдаются колебания v(OBO) и v(OBN), а также другие представленные в работе [4].

В результате такого взаимодействия на фрагментированных периметрах МАС t-BN_r исчезают области $\Sigma(\delta+)_i$, а области $\Sigma(\delta-)_i$ взаимно отталкивают соседние МАС. Размеры атомов кислорода (2–) и водорода (1+) малы (табл.) и не оказывают пространственных затруднений уменьшению межслоевых расстояний. Электростатические причины сохраняют двухмерное состояние и стабилизируют разупорядочение t-BN_r.

Дальнейшее повышение температуры в атмосфере аммиака приводит к очищению фрагментированных периметров MAC t-BN_r. Полусумма ($\chi_{\rm B} + \chi_{\rm N}$)/2 = 2,54 и $\chi_{\rm C}$ = 2,50 меньше чем полусуммы ($\chi_{\rm B} + \chi_{\rm O}$)/2 = 2,75 и ($\chi_{\rm C} + \chi_{\rm O}$)/2 = 3,00. Поэтому кислород, при нагревании t-BN_r, как и в случае активированных углей [11] выделяется в виде летучих оксидов бора (2+) и CO/CO₂ соответственно. Оксид бора (2+) или ВО в газовой фазе впервые был обнаружен Маликеном при изучении полосчатых спектров в 1925 году [21]. Удаление атомов кислорода с внешних периметров t-BN_r приводит в действие механизм трехмерного фазового превращения в BN_r (рис. 2, 3, сегмент III).

Стабилизация двухмерной структуры порошков t-BN_r происходит в результате присоединения к периферическим атомам бора (3+) третьего компонента, главным образом кислорода (2–). Присоединение других продуктов гидролиза и дегидратации к периметрическим атомам бора и азота по данным химического анализа имеет характер примеси [2, 3].

Замещение периферийных атомов азота (3–) атомами кислорода (2–) вызывает нарушение соотношения $X_{\rm B}/X_{\rm N}$ =0,771 и по своему характеру аналогично образованию твердых растворов замещения [5].

Частично упорядоченные порошки (ЧУП) BN_r состоят из трехкомпонентной части с двухмерной структурой, а также двухкомпонентной части с трехмерной структурой. При равенстве всех прочих системных параметров (*P*, *V*, *T*) компонентная разность этих частей по правилу фаз Гиббса свидетельствует о том, что ЧУП BN_г состоят из двух фаз.

Совокупность экспериментальных результатов о различиях структуры, состава, свойств, а также механизмов (диффузионный и мартенситный) фазовых превращений частично упорядоченных порошков (ЧУП) графитоподобного нитрида бора при ВТУС, по типу (ЧУП) ВN_г → BN_в + BN_{сф}, подтверждает наличие в них двух фаз.

Существует количественная зависимость состава и размеров МАС от натурального ряда целых чисел, имеющих физический смысл числа сопряженных макроциклов: 0, 1, 2, ..., n, поликондесированных атомов бора и азота, периметрически симметричных оси 6_3 -порядка (рис. 1, 3), которая будет рассмотрена в следующих публикациях.

4. ВЫВОДЫ

Представлена модель, одноатомного слоя графитоподобного нитрида бора и графенового слоя t- C_r .

Качественные рентгенографические характеристики, ИК-спектрометрии, а также состава t-BN_г гармонично согласуются в рамках предложенной модели.

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

- Н. И. Боремчук, В. Б. Зелявский, А. В. Курдюмов, ДАН СССР, 306, № 6: 1381 (1989).
- 2. А. В. Курдюмов, В. Ф. Бритун, Н. И. Боримчук, В. В. Ярош, Мартенситные и диффузионные превращения в углероде и нитриде бора при ударном сжатии (Киев: Куприянова О. О.: 2005).
- 4. M. Hubaček, T. Sato, and T. Ishii, J. Solid State Chem., 109: 384 (1994).
- А. В. Курдюмов, В. Ф. Бритун, В. В. Гарбуз, Т. В. Томила, В. В. Ярош, В. И. Ляшенко, В. Б. Зелявский, Наноструктурное материаловедение, № 2: 25 (2009).
- 6. А. В. Курдюмов, В. Ф. Бритун, А. И. Даниленко, *Наноструктурное материаловедение*, № 1: 9 (2007).
- 7. F. R. Corrigan and F. P. Bundy, J. Chem. Phys., 63, No. 9: 3812 (1975).
- 8. А. М. Мазуренко, А. А. Левченко, П. П. Шиманович, *Сверхтвердые материалы*, № 2:11 (1982).
- 9. V. Z. Turkevich, Diamond and Relat. Mater., 8: 2032 (1999).
- 10. S. K. Singhal and J. K. Park, J. Cryst. Growth, 260: 217 (2004).
- 11. H. P. Boehm, Adv. Catal. and Retal. Subj., 16, No. 8/9: 179 (1966).
- M. L. Studebaker, E. W. Hoffman, A. C. Wolfe, and L. G. Nabors, *Ind. Fnd. Tng. Chem.*, 48, No. 1: 162 (1956).
- 13. Х. П. Боэм, Катализ. Стереохимия и механизмы органических реакций (Москва: Мир: 1968).
- 14. В. В. Гарбуз, В. В. Захаров, Наноструктурное материаловедение, № 1:74

481

(2007).

- 15. В. В. Скороход, І. В. Уварова, А. В. Рагуля, *Фізико-хімічна кінетика в на*ноструктурних системах (Київ: Академперіодика: 2001).
- А. А. Конкина, Термо-, жаростойкие и негорючие волокна (Москва: Химия: 1978).
- 17. Т. Я. Косолапова, Т. В. Андреева, Т. С. Бартницкая, *Неметаллические ту*гоплавкие соединения (Москва: Металлургия: 1985).
- 18. А. В. Курдюмов, Т. С. Бартницкая, В. И. Ляшенко, *Порошковая металлур*гия, № 11-12: 88 (2005).
- 19. К. Дэй, Д. Селбин, *Теоретическая неорганическая химия* (Москва: Химия: 1976).
- 20. Б. К. Вайнштейн, В. М. Фридкин, В. Л. Инденбом, Современная кристаллография. Структура кристаллов (Москва: Наука: 1979), т. 2.
- 21. Г. Реми, *Курс неорганической химии* (Москва: Изд-во иностр. литературы: 1963), т. 1.