© 2010 ІМФ (Інститут металофізики ім. Г. В. Курдюмова НАН України) Надруковано в Україні. Фотокопіювання дозволено тільки відповідно до ліцензії

PACS numbers: 05.45.Df, 05.65.+b, 61.46.Df, 62.23.St, 64.60.qe, 64.75.Yz, 81.05.Zx

Самосборка и самоорганизация неравновесных углеродных наногелей

М. С. Жуковский, С. А. Безносюк^{*}, Я. В. Лерх^{*}, Т. М. Жуковская

Алтайский государственный технический университет, 656038 Барнаул, Россия *Алтайский государственный университет, 656049 Барнаул, Россия

С использованием методов компьютерной нанотехнологии рассмотрены неравновесные процессы самосборки и самоорганизации синтеза углеродного наногеля в нанопорах материала. Квантовая запутанность наногеля характеризуется топологическими индексами: числом узлов и числом ребер графа связности. Сложность графа численно измеряется информацией *I*. В статье показана корреляция между информацией Шеннона как меры квантовой запутанности наногеля и его морфологией. Показано, что при монотонном увеличении концентрации наночастиц углерода в поре от 0% до 100% информация Шеннона проходит через максимум; при этом кривая напоминает нецентральную усеченную пирамиду. Максимум информации Шеннона определяет направленность неравновесных процессов самосборки и самоорганизации углеродных наночастиц к формированию клеточно-матричного наногеля, в котором кривая вероятности для каждой наночастицы быть квантовозапутанной имеет двойную вершину максимумов для случаев 10 или 19 соседей соответственно.

З використанням методи комп'ютерної нанотехнології розглянуто нерівноважні процеси самоскладання й самоорганізації синтези вуглецевого наноґелю в нанопорах матеріялу. Квантова заплутаність наноґелю характеризується топологічними індексами: числом вузлів і числом ребер графа зв'язности. Складність графа чисельно вимірюється інформацією I. У статті показано кореляцію між Шенноновою інформацією як міри квантової заплутаности наноґелю і його морфологією. Показано, що при монотонному збільшенні концентрації наночастинок вуглецю в порі від 0% до 100% Шеннонова інформація проходить через максимум; при цьому крива нагадує нецентральну зрізану піраміду. Максимум Шеннонової інформації визначає спрямованість нерівноважних процесів самоскладання й самоорганізації вуглецевих наночастинок до формування клітково-матричного наноґелю, у якому крива ймовірности для кожної наночастинки бути квантовозаплутаною має подвійну вершину максимумів для випад-

445

446 М. С. ЖУКОВСКИЙ, С. А. БЕЗНОСЮК, Я. В. ЛЕРХ, Т. М. ЖУКОВСКАЯ

ків 10 або 19 сусідів відповідно.

Using computer nanotechnology methods, nonequilibrium processes of the self-assembly and self-organising of carbon nanogel synthesis in nanopores of material are considered. The nanogel quantum complexity is characterised by topological indexes—number of junctions and number of ribs of a connectivity graph. Complexity of the graph is numerically measured by the information, *I*. In article, correlation between the Shannon information as a measure of the nanogel quantum complexity and its morphology is shown. As shown, in the case of monotonous increase of carbon-nanoparticles concentration in a pore from 0% to 100%, the Shannon information passes through a maximum. Thus, a curve is similar to the off-centre truncated pyramid. The maximum of Shannon information determines a trend of nonequilibrium processes of the self-assembly and self-organising of carbon nanoparticles to formation of cellular—matrix nanogel, in which the probability curve for each nanoparticle to be quantum-complicated has double peak of maximums for cases of 10 or 19 neighbours, respectively.

Ключевые слова: наногель, самосборка, самоорганизация, компьютерная нанотехнология.

(Получено 15 апреля 2010 г.)

1. ВВЕДЕНИЕ

В настоящее время квантовые механизмы процессов самоорганизации и самосборки являются одними из наиболее исследуемых вопросов в области нанонаук и наноинжиниринга нового поколения. Ранее, в работах [1, 2] нами были предложены теоретические подходы к общим принципам описания самосборки и самоорганизации неравновесных квантовых наносистем конденсированного состояния. Новизна этих принципов включала в себя ряд положений. Вопервых, неравновесная наночастица — это финитная в пространстве и во времени открытая квантовая система с флуктуирующим зарядом и спином. Во-вторых, квантовая наносистема имеет два типа состояний корпоративного движения наночастиц: квантово-запутанное состояние «роя» и квантово-незапутанное состояние «газа» наночастиц. Роевая наночастица находится в смешанном квантовом состоянии, а газовая — в чистом квантовом состоянии. В третьих, неравновесная квантовая нанодинамика «газа» задаётся дальнодействующими силами электромагнитных у-полей, а в «рое» силами контактных обменных β-взаимодействий, дополняющих дальнодействующие корпоративные корреляции между наночастицами. В-четвёртых, количественно определены информационная мера I сложности квантовой запутанности «роя» и энтропийная мера S беспорядка (хаоса) «газа» наносистем. Использование этих принципов позволяет построить универсальную схему компьютерного моделирования процессов неравновесного усложнения (самоорганизации) и упорядочения (самосборки) различных наносистем.

Эффекты процессов самосборки и самоорганизации экспериментально наблюдались в системах углеродных наногелей [3-5]. Известно, что изучение гидрозолей ультрадисперсных алмазов (УДА) в начале девяностых годов продемонстрировало, что УДА в водной среде агрегированы. При этом первичные частицы размером в 2 нанометра образуют вторичные частицы размером 20 нанометров. На основе исследования гидрозолей (C < 5%) было установлено, что их фрактальная размерность равна 2,1–2,3. Случай превышение 5% ой концентрации растворов УДА наногелей был исследован методом малоуглового рентгеновского рассеивания. Было установлено, что фрактальная размерность полученных во взрывной камере («объемный» тип фрактала) УДА изменяется в пределах 2,2–2,84, в тоже время, «поверхностный» тип фрактала на стенках камеры имеет диапазон 2,2-2,94. Было показано также, что наночастицы, размер которых превышает 3 нанометра, в неравновесных условиях сохраняют форму и соединяются, формируя фрактальные наносистемы размерами около 30-40 нанометров. Присутствие устойчивых уровней агрегации детонационного наноуглерода было также доказано результатами адсорбционных измерений. Вместе с тем, до сих пор не было никаких теоретических исследований механизмов формирования таких наносистем. В данной работе представлены результаты применения основных принципов к исследованию задачи морфогенеза наногелей углеродных частиц в нанопорах материалов методами компьютерных нанотехнологий.

2. МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ САМОСБОРКИ И САМООРГАНИЗАЦИЯ НАНОСИСТЕМ

Согласно концепциям квантовой топологии в неравновесных наносистемах общего вида возможно выявить три типа взаимодействий [1, 2]. Электронное обменно-корреляционное взаимодействие между всеми атомами внутри наночастиц задаёт α -силы химических связей между атомами внутри наночастиц. Соответственно, электронное обменно-корреляционное взаимодействие между двумя квантово-запутанными наночастицами задаёт β -силы контактного обменного взаимодействия. Остальные межчастичные электродинамические силы, не имеющие квантового механизма обменной корреляции, определяют γ -силы электромагнетизма между квантово-незапутанными наночастицами. Эти силы определяют иерархию трёх основных уровней нанодинамики. Они показаны на рис. 1. Вопервых, квантовое движение атомов в поле химических α -сил внутри наночастицы. Во-вторых, квантовое движение запутанных наночастиц в поле супрахимических β -сил внутри локального роя. В-

Рис. 1. Схематическое изображение квантово-топологической структуры неравновесной наносистемы.

третьих, квантовое движение газа роевых наносистем под действием физических γ-сил.

Включающая *m* наночастиц с *b* квантовыми запутанностями неравновесная наносистема определяется статистическим оператором плотности D^{Ambi} . В этом операторе аддитивно представлены вклады статистических операторов, находящихся в смешанном квантовом состоянии *m* наночастиц и статистических операторов *b* топологических β -связей квантовой запутанности между наночастицами [1]:

$$D^{\text{Ambi}} = \sum_{p}^{m} D_{p}^{\text{Ambi}} + \sum_{\{pp'\}}^{b} D_{pp'}^{\text{Ambi}}$$
;

здесь Ambi обозначает индекс антисимметризованного тензорного произведения волновых функций $\{\Psi_p^{mbi}\}$ наночастиц с порядковыми

номерами p = 1, ..., m, запутанность которых задаётся b ребрами топологического *i*-графа наносистемы. В случае газа наночастиц нет β взаимодействий; поэтому $\left(D^{Ambi}\right)_{pp'} = 0$, и матрицы $\left(D^{Ambi}\right)_p$ наноча-

стиц принадлежат чистому незапутанному квантовому состоянию.

Запутанность наносистемы характеризуется топологическими индексами графа: числом вершин, числом ребер, связностью графа. Сложность графа наносистемы количественно измеряется информацией *I*. Например, эта мера определена информацией Хартли в битах, как двоичный логарифм числа различимых графов (меры сложности) наносистемы [1]. Типичная форма информации сложности квантовой запутанности наносистемы, как функции числа ребер, показана на рис. 2. При монотонном увеличении числа ребер в графе информация сложности проходит через не вполне выраженный максимум. График подобен симметричной усеченной пи-

Рис. 2. Информация Хартли β-связного графа квантового запутывания в наносистемах m наночастиц в зависимости от полного числа b β-связей.

рамиде. Максимальная информация достигается при равенстве числа пар связанных и несвязанных узлов графа. Напротив, самым простым является полный граф, в котором все узлы связаны попарно. Его информация равна нулю. У графа с минимальным числом ребер, обеспечивающих его связность, также есть минимум информационной емкости, но не равный нулю. В случае газа наночастиц у графа с нулевым числом ребер — нулевая информация.

Для точного описания процессов самосборки и самоорганизации в углеродных наногелях методами компьютерной нанотехнологии нами были построены вычислительные алгоритмы и решены пять взаимосвязанных нижеперечисленных задач.

1. Методом нелокального функционала плотности [6] были рассчитаны энергии связи межатомного химического α-взаимодействия и межчастичного квантово-запутанного β-взаимодействия для углеродных наночастиц кубической формы.

2. В приближении модели ограниченной диффузией агрегации (ОДА) были построены имитационные компьютерные модели формирования из атомов неравновесных углеродных наночастиц [7].

3. В приближении модели кластер-кластерной агрегации (ККА) были построены имитационные компьютерные модели формирования неравновесных наносистем наночастиц углерода с различными концентрациями [7].

4. Методом молекулярной механики были построены имитационные модели релаксации фрактальных структур наногелей

5. В рамках теории фракталов и теории информации [8, 9] были описаны результаты процессов самосборки и самоорганизации на-

ногелей.

3. РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Рассмотрим и обсудим основные результаты компьютерного моделирования самосборки и самоорганизации наногелей алмазоподобных наночастиц в нанопорах. Предположим, что наногель создан из N наночастиц в нанопорах, чье пространство задано сеткой V дискретных субъячеек. Для теоретического описания модели введём определения для вычислительных характеристик такой наноси-

ТАБЛИЦА. Концентрация C, информация Шеннона I_s , фрактальная размерность D в зависимости от числа углеродных наночастиц N в наногеле.

Ν	<i>C</i> , %	$I_{\scriptscriptstyle S}$, бит	D
2700	10	2,628	2,454
5400	20	3,105	2,658
8100	30	3,404	2,753
10800	40	3,606	2,816
13500	50	3,713	2,862
16200	60	3,753	2,898
18900	70	3,765	2,929
21600	80	3,659	2,956
24300	90	3,275	2,979
27000	100	0,764	3

Рис. 3. Информация Шеннона β-связного графа квантового запутывания в наногелях углерода в зависимости от концентрации *C* наночастиц.

стемы, следующим образом.

Концентрация *N* наночастиц в системе *V* субъячеек пространства зададим в виде:

$$C=\frac{N}{V}\cdot 100\%.$$

Для вычисления информации разнообразия возможных агрегатов наночастиц используем принцип сигнатур. Наноструктура представлена графом, в котором вершины обозначают наночастицы, а ребра представляют β -связи наночастиц между собой. В отличие от нашей предыдущей работы [1], где использована в качестве меры сложности (самоорганизации) информация Хартли, квантовую запутанность данной наносистемы будем характеризовать другой мерой — величиной Шенноновской информационной энтропии I_s графа квантовой запутанности наногеля:

$$I_s = -\sum P_i \log_2 P_i,$$

где $P_i = N_i/N$ является вероятностью возникновения *i*-того типа вершины, описывающей наличие *i* квантово-запутанных β -связей у наночастицы с соседями. Здесь N — общее количество вершин, а N_i — число вершин данного типа. Каждая пара наночастиц связана не более чем одним ребром. Число ребер инцидентных с вершиной определяет ее степень. В случае кубической формы наночастиц возможно выделить 26 типов вершин, отличающихся числом ребер.

Компьютерный эксперимент неравновесной самосборки и самоорганизация фрактальных наногелей алмазоподобных наночастиц в поре показал неординарные результаты, которые численно представлены в табл. Самые интересные случаи показаны на рис. 3. Видно, что при монотонном увеличении концентрации С наноалмазов в поре от нуля до 100 процентов Шенноновская информационная энтропия проходит через не вполне выраженный максимум. В отличие от информации Хартли (см. рис. 2) график подобен несимметричной смещённой от центра усеченной пирамиде. Чтобы раскрыть причины этого обратимся к рис. 4, который представляет три типичных формы распределения вероятности $\{P_i\}$ для узлов инцидентных *i* ребрам ($i \in \{0, 1, 2, ..., 26\}$). Эти распределения получены для финального самособранного и самоорганизованного устойчивого наногеля при трех различных концентрациях наночастиц: 10%, 65%, 100%.

Из рисунка 4 видно, что распределение вероятности $\{P_i\}$ качественно меняется, когда изменяется концентрация наночастиц. Очевидно, что есть три основных формы запутанных агрегатов наноструктур: «свободный наногель» (C < 50%), «клеточно-матричный наногель» (80% > C > 50%), и «твердый наногель» (C > 80%). Морфологии этих типичных форм продуктов неравновесных процессов само-

Рис. 4. Кривая распределения вероятности $\{P_i\}$ в зависимости от числа і квантово-запутанных связей у одной наночастицы для трех типов морфологии углеродного наногеля: «свободный гель» (C = 10%), «клеточноматричный гель» (C = 65%) и «твердый гель» (C = 100%).

сборки и самоорганизации показаны на рис. 5.

Для случаев малой концентрации типичным является кривая распределений вероятности $\{P_i\}$ с единственным, острым максимумом. Соответствующая топологическая морфология «свободного геля» показана слева на рис. 5. У второй формы есть кривая с двумя нечеткими максимумами. В этом случае морфология соответствует «клеточно-матричному гелю», показанному в центре рис. 5. Третий вид кривой с тремя острыми максимумами типичен в случаях вы-

Рис. 5. Три морфологических типа углеродного наногеля. Слева направо: «свободный гель» (C = 10%), «клеточно-матричный гель» (C = 65%) и «твердый гель» (C = 100%).

сокой концентрации. Этот тип «твёрдого геля» показан на правой стороне рис. 5. Следовательно, максимум Шенноновской информации I_s на интервале концентрации от 50% до 80% означает, что сложность квантовой запутанности наносистемы достигает экстремума, когда топологическая морфология соответствует «клеточноматричному» наногелю.

4. ЗАКЛЮЧЕНИЕ

На основе представленного обсуждения можно сделать основные выводы. Во-первых, для неравновесной самосборки и процессов самоорганизации при синтезе наногелей углерода внутри нанопор корреляция между Шенноновской информационной энтропией, как меры квантовой запутанности, и их морфологией имеет асимметричный экстремальный характер. Во-вторых, максимум Шенноновской информационной энтропии определяет тенденцию при протекании неравновесных процессов формирования путём самосборки и самоорганизации «клеточной матрицы» наногеля, как наиболее сложной и адаптивной по своей морфологии к условиям среды. В-третьих, в случае «клеточно-матричного наногеля» преимущественно реализуется механизм квантового запутывания каждой наночастицы соответственно с 10 и 19 соседними наночастицами, в результате чего «клеточно-матричный» наногель углерода приобретает наилучшую адаптивную устойчивость.

Работа выполнена при поддержке гранта РФФИ 10-08-98000р_сибирь_а и тематического плана Федерального Агентства Образования (Российская Федерация).

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

- 1. S. A. Beznosyuk, *Mater. Sci. Eng. C.*, **19**, No. 1: 369 (2002).
- 2. S. A. Beznosyuk, A. V. Kolesnikov, D. A. Mezentzev, M. S. Zhukovsky, and T. M. Zhukovsky, *Mater. Sci. Eng. C*, **19**, No. 1: 91 (2002).
- 3. А. Г. Овчаренко, А. Б. Солонина, Р. Р. Сатаева, А. В. Игнатенко, *Коллоидный журнал*, **6**: 1067 (1991).
- 4. М. В. Байдакова, А. Я. Вул, В. И. Сиклицкий, Н. Н. Фалеев, *ФТТ*, 4: 776 (1998).
- 5. А. Л. Верещагин, Детонационные алмазы (Бийск: Изд-во АГТУ: 2001).
- 6. S. A. Beznosjuk, B. F. Minaev, R. D. Dajanov, and Z. M. Muldakhmetov, *Int. J. Quant. Chem.*, **38**, No. 6: 779 (1990).
- 7. S. A. Beznosyuk, Ja. V. Lerh, M. S. Zhukovsky, and T. M. Zhukovsky, *Mater. Sci. Eng. C*, **27**, No. 5–8: 1270 (2007).
- 8. S. A. Beznosyuk, Ja. V. Lerh, M. S. Zhukovsky, and T. M. Zhukovsky, *Mater. Sci. Eng. C*, **29**: 884 (2009).
- 9. С. А. Безносюк, Я. В. Лерх, М. С. Жуковский, Т. М. Жуковская, Перспективные материалы, № 7: 49 (2009).