PACS numbers: 62.23.Pq, 72.20.Pa, 72.80.Rj, 72.80.Tm, 81.05.ub, 81.07.Wx, 85.85.+j

Термоелектричний адсорбційний ефект в порошку вуглецевих нанорурок

В. С. Копань, Н. В. Хуторянська, Ю. В. Копань

Київський національний університет імені Тараса Шевченка, вул. Володимирська, 64, 01601 Київ, Україна

В інтервалі 293–333 К виміряно ріжницю E_T між термо-ерс сухого порошку з вуглецевих нанорурок (ПВНР) і термо-ерс ПВНР після адсорбції рідин. E_T зменшується в серії рідин: алькоголь, уайт-спірит, вода. $E_T > 0$ в ПВНР, $E_T < 0$ в графітовому порошку. E_T виникає завдяки адсорбції і тунелюванню зарядів через щілини між частинками порошку.

The difference E_T between the thermoelectric power (TEP) of dry carbon nanotubes powder (CNTP) and TEP of CNTP after liquids adsorption is measured within the temperature range from 293 K to 333 K. The E_T is decreasing in the series of liquids: alcohol, white spirit, water. The $E_T > 0$ in CNTP, and $E_T < 0$ in graphite powder. The E_T arises owing to adsorption and tunnelling of charges across gaps between the powder particles.

В интервале 293–333 К измерена разность E_T между термо-эдс сухого порошка из углеродных нанотрубок (ПУНТ) и термо-эдс ПУНТ после адсорбции жидкостей. E_T уменьшается в серии жидкостей: алкоголь, уайтспирит, вода. $E_T > 0$ в ПУНТ, $E_T < 0$ в графитовом порошке. E_T возникает благодаря адсорбции и туннелированию зарядов через щели между частицами порошка.

Ключові слова: термоелектрорушійна сила, вуглецеві нанорурки, порошок, адсорбція.

(Отримано 22 березня 2010 р.)

1. ВСТУП

В адсорбційних аналізаторах газів і рідин використовують плівки, мікродроти, волокна та інші об'єкти з великою питомою поверхнею [1]. Адсорбція газів і рідин змінює електроопір, наприклад. За його

177

величиною визначають наявність домішок у середовищі, що аналізується. Порошки використовують для цих цілей у спеченому пористому стані. Насипні порошки мало придатні, бо їх електроопір змінюється не лише за рахунок адсорбції, а й від дії вібрацій (звуку, наприклад). Не відомі літературні джерела, в яких би повідомлялось про вплив адсорбції на термо-ерс насипних порошків [2]. Дослідження цього явища цікаве з точки зору фізики і корисне для практичного використання в аналізаторах рідин на домішки, бо термо-ерс чутлива до домішок, як і опір, але мало чутлива до вібрацій.

Мета роботи – дослідження впливу адсорбції на термо-ерс насипного порошку з вуглецевих нанорурок.

2. МЕТОДИКА ДОСЛІДЖЕНЬ

Схеме пристрою для вимірювання впливу адсорбції на термо-ерс наведенј на рис. 1.

Термо-ерс *Е*_т вимірювали потенціометром 1 з вхідним опором 20 Ом і ціною поділки шкали 10⁻⁸ В. Етальонна гілка термопари — це циліндер 2 діяметром 5 мм і довжиною 30 мм, виготовлений з полікристалічного графіту чистотою 99,994%. Зразок 3 — це пустотілий циліндер з еластичної пластмаси («кембрик» для електротехніки), наповнений порошком з нанорурок, або з графіту. Етальон 2 і зразок 3 затиснуті в парі холодних мідних клем 4 і 5 та в гарячій 6. $BC \approx AD = 23-25$ мм. В порожнині 7 клеми 6 циркулює вода з температурою $T_r = 64 \pm 0.05$ °C; в порожнині 8 між холодними клемами, що розділені ізолятором 9, — трансформаторне мастило з температурою $T_x = 20\pm0,1^{\circ}$ С. Завдяки циркуляції цих рідин ріжниця температур точок A i B та C i D попарно не перевищує $\Delta T = 0,0001^{\circ}$ C. Цим виключаються паразитні термо-ерс, що виникають внаслідок контакту зразка 3 і етальону 2 з мідними клемами [3]. Кінці оболонки зразка 3 заварені для того, щоб порошок не висипався. Внизу оболонки навколо точок В і С є отвори, через які порошок контактує з мідними клемами. Вгорі оболонки є отвір навколо точки L, через який в порошок закапують потрібну кількість рідини, адсорб-

Рис. 1. Схема пристрою для міряння впливу адсорбції на термо-ерс

цію якої вивчають. Спочатку вимірюють термо-ерс E_c сухого порошку відносно графітового етальону. Потім, після закапування рідини, вимірюють $E_{\text{Ti}}(t)$, що змінюється з часом адсорбції. Визначають ріжницю $E_T = E_{\text{Ti}}(t) - E_c$, обумовлену адсорбцією.

3. ЕСПЕРИМЕНТАЛЬНІ РЕЗУЛЬТАТИ ТА ЇХ ОБГОВОРЕННЯ

Вуглецеві нанорурки (ВНР), адсорбцію яких вивчали, мали діяметер $h \approx 53$ нм. Іх засипали в рурку з еластика, трамбуючи сірником, щоб густина досягала значення 0,02 г/см³. Термо-ерс сухого зразка 3 (рис. 1) відносно полікристалічного графітового етальону 2 була $E_c = 3,3$ мкВ/К. Термо-ерс графітового етальону відносно олива $E_T = 4,6$ мкВ/К. Вивчалась також адсорбція графітового порошку (ГП) з діяметром частинок h = 15-20 мкм, одержаного розмелюванням (розтиранням) у графітовому тиґлі уламків графіту, з якого був виготовлений етальон 2 (рис. 1). Порошок був просіяний через сита, засипаний в еластичну рурку до густини 0,01 г/см³. В 1959 р. було вперше знайдено, що термо-ерс металів змінюється при їх деформації [4]. Графітові матеріяли не є виключенням [5]. Тому графітовий порошок для зняття залишкових напруг був відпалений при 600°С протягом 2 годин у вакуумі 10⁻⁴ мм рт. ст. Його термо-ерс відносно графітового етальону $E_c = 22 \text{ мкB/K}$. На рисунках 2–4 наведено залежності $E_T = E_{Ti}(t) - E_C$ від часу t, тобто приріст термо-ерс, обумовлений адсорбцією обраної рідини. Діяметер (2 мм) отвору А підібраний так, щоб адсорбція-десорбція відбувались повільно і їх можна було поміряти інерційним приладом. Маємо наступні закономірності.

Адсорбція етанолу, води, уайт-спіриту порошком НР супроводжу-

Рис. 2. Залежність від часу приросту (внаслідок адсорбції етилового спирту) термо-ерс E_T порошку НР (*a*) та графітового порошку (*б*). Максимуми і мінімуми 1, 2, 3, 4 E_T обумовлені адсорбцією 2, 4, 4, 4% об., відповідно. Стрілками показано початок чергового циклю адсорбції.

Рис. 3. $E_T(t)$, обумовлена адсорбцією уайт-спіриту порошком НР (*a*) та графітовим порошком (б). Максимуми і мінімуми 1, 2, 3 — адсорбція 2, 4, 4% об. рідини, відповідно.

ється зміною термо-ерс. Поперечне стискання зразка 3 (рис. 1), «пружність» якого забезпечується пружністю пластмасової оболонки, заповненої сухим порошком НР, обумовлює зменшення термоерс E_c (рис. 5). Це можна пояснити наступним чином.

Рис. 4. $E_T(t)$, обумовлена адсорбцією води графітовим порошком (*a*, *б*) та порошком НР (*в*). Максимуми 1, 2, 3 — адсорбція 4, 4, 4% об. води.

Рис. 5. Залежність термо-ерс E_c від деформації стискання є порошку вуглецевих нанорурок: 1 — гілка стискання; 2 — розвантаження.

Термо-ерс вуглецевих матеріялів при T > 100 К обумовлена в кристалітах дифузією носіїв зарядів з гарячої области в холодну (як в металах) і їх дифузією по стрибковому механізму зі змінною довжиною стрибка в аморфних ділянках [5]. При адсорбції етанолу, уайт-спіриту, води, їх молекулі не проникають у середину кристалітів, а зосереджуються на поверхнях, в порах тощо. Це не впливає на дифузійну складову термо-ерс ні за механізмами, що характерні для металевих кристалів, ні за стрибковим механізмом. Насипні порошки, які ми досліджували, мають додаткові потенціяльні бар'єри для дифузії зарядів, що знаходяться в точках електроконтактів частинок порошку. Проходження електроструму через структуру метал-діелектрик-метал вперше розглянуто в роботі [6] за допомогою моделю тунелювання зарядів через діелектрик. Розглянемо, чи придатний модель тунелювання для пояснення наших результатів у спрощеному варіянті теорії [7].

Нехай електрон, що має кінетичну енергію $E = k_B T = k_B \cdot 293 \text{ K} = 0,02$ еВ (температура міряння E_T , нагадуємо, 293–333 К), потенціяльну енергію U = 0 і масу m з першої частинки порошку налітає на потенціяльний бар'єр $U_2 > E$ (проміжок шириною ω між частинками). Ймовірність його появи в сусідній частинці, де потенціяльна енергія $U_3 \sim U$, знайдемо, розв'язавши стаціонарне рівнання Шрединґера. Тоді:

$$\frac{J_{3}}{J_{1}} = \frac{16K_{1}K_{3}\gamma^{2}}{\left(K_{1}^{2} + \gamma^{2}\right)\left(K_{3}^{2} + \gamma^{2}\right)} \exp(-2\gamma\omega), \tag{1}$$

$$K_1 = \left(2mE\right)^{1/2}/\hbar, \qquad (2)$$

$$K_{3} = \frac{1}{\hbar} \left[2m \left(E - U_{3} \right) \right]^{1/2}, \qquad (3)$$

$$\gamma = \frac{1}{\hbar} \left[2m \left(U_2 - E \right) \right]^{1/2}, \qquad (4)$$

 J_1 і J_3 — густини потоку електронів, що налітають на бар'єр ω і тих, які проходять, тунелюючи, в сусідню частинку, відповідно.

До сьогодення справедливою є формула Мотта (5), що зв'язує електропровідність $\sigma(E)$ з дифузійною частиною термо-ерс E_T [5, 8]:

$$E_{T} = \frac{T^{2}k_{B}T}{3e} \left[\frac{d\ln\sigma(E)}{dE} \right]_{E=E_{\Phi}},$$
(5)

де E_{Φ} — Фермієва енергія. Формула (5) пояснює механізм ґенерування термо-ерс при дифузії зарядів і їх розсіянні на точкових дефектах, дислокаціях, порах, границях зерен та ін., що в своїх областях змінюють $\sigma(E)$, енергію E, і навіть, E_{Φ} [8]. Ширина потенціяльного бар'єру ω входить в експоненту (1), а його висота U_2 — в передекспоненційний множник і експоненту (через γ). Змінюючи ω і U_2 адсорбцією та деформацією порошку, змінюємо J_3/J_1 , тобто змінюємо і $\sigma(E)$. Тоді, як випливає з (5), змінюватиметься і E_T . Це і спостерігаємо на досліді (рис. 2–5).

Експоненційний спад $E_c(\varepsilon)$ (рис. 5) обумовлений тим, що ω зменшується при збільшенні деформації стискання ε , зростає при цьому експоненційно J_3/J_1 в (1), тобто, зростає термострум у порошковій гілці термопари, наближаючись до величини термоструму у графітовому етальоні. Тому зменшується E_c . Коли термоструми, що течуть від гарячого спаю до холодних кінців термопари, в обох гілках однакові, $E_c = 0$ Деформація порошку здійснюється за рахунок зменшення порожняви між частинками, бо їх в порошку НР понад 95% об. (густина графіту 2,1 г/см³, порошку — 0,02 г/см³). Адсорбційна E_T графітового порошку від'ємна, а НР — додатна. Це можливо, згідно (1) і (4), коли при адсорбції спадає висота потенціяльного бар'єру U_2 в графітовому порошку, а в порошку нанорурок зростає.

В багатошарових і волокнистих композиціях з нанорозмірними елементами структури можливе як зменшення, так і збільшення $\sigma(E)$ за рахунок розсіяння вільних носіїв зарядів на границях між шарами (волокнами) і за рахунок зменшення висоти потенціяльних бар'єрів U_2 на заокругленнях з малим радіюсом кривини [9, 10]. Адсорбція на вістрях (кінці нанорурок) і на западинах та пласких ділянках частинок графітового порошку теж відбувається неоднаково. Крім того, можливе капілярне засмоктування рідини в середину нанорурок. На початковому етапі вивчення термоелектричного адсорбційного ефекту важко вказати конкретну причину зміни U_2 в HP і графітовому порошку.

Порошок можна розглядати як полікристал з широкими грани-

цями у стані великої пластичної деформації, коли дифузійна частина термо-ерс залежить від розсіяння зарядів на дефектах кристалічної будови в кристалітах, визначається стрибковим механізмом (зі змінною довжиною стрибка) в аморфізованих ділянках, тунелюванням зарядів через великі перешкоди на їх шляху.

Етанол добре змочує графітові матеріяли, вода — найгірше. Тому, за абсолютною величиною E_T зменшується при адсорбції рідин по ряду: етанол, уайт-спірит, вода.

Зміна E_T при десорбції етанолу здійснюється найшвидше, води найповільніше. Це обумовлено тим, що $E_r \approx 64^{\circ}$ С, і близька до точки кипіння етанолу. Десорбція також залежить від діяметра отвору L (рис. 1). Ми підібрали такий діяметер (2 мм), щоб можна було встигати вимірювати $E_T(t)$.

Зміна E_T тим більша, чим більше адсорбовано порошком етанолу чи уайт-спіриту (рис. 2, 3). Адсорбція-десорбція води здійснюється занадто повільно (рис. 4, δ), так що один цикль становить ~ 50 годин.

Зі збільшенням кількости циклів адсорбція-десорбція наступає насичення адсорбенту з графітового порошку, в результаті чого зменшується амплітуда E_T (рис. 2, δ). Насичення можна ліквідувати, витримуючи порошкову гілку термопари при підвищеній температурі.

4. ВИСНОВКИ

Внаслідок адсорбції етанолу, уайт-спіриту або води насипним порошком з вуглецевих нанорурок або з графіту змінюється термо-ерс на величину E_T . $E_T > 0$ в порошку HP, і $E_T < 0$ в графітовому порошку.

Ґенерація *E*_T насипними порошками в значній мірі обумовлена тунелюванням зарядів через проміжки між частинками.

При поперечному до ґрадієнту температури стисканні сухого насипного порошку НР змінюється термо-ерс *E*_c за рахунок зміни проміжків (ширини потенціяльних бар'єрів) між нанорурками.

ЦИТОВАНА ЛІТЕРАТУРА

- 1. А. Адамсон, Физическая химия поверхности (Москва: Мир: 1979).
- 2. З. А. Дурягіна, Фізика та хімія поверхні (Львів: Львівська політехніка: 2009).
- 3. В. Д. Борисенко, В. С. Копань, В. Б. Бессонов, Термоэлектрическое устройство для контроля неоднородности материалов (Авт. св. СССР №750357) (Бюллетень изобретений, № 27 (1980)).
- 4. С. Д. Герцрикен, Н. Н. Новиков, В. С. Копань, УФЖ, 4, № 3: 293 (1959).
- 5. Л. Ю. Мацуй, *Автореферат доктор. дисертації* (Київ: Київський національний університет імені Тараса Шевченка: 2005).
- 6. Г. Бете, А. Зоммерфельд, Электронная теория металлов (Москва–Ленинград:

ОНТИ: 1938).

- 7. Л. Солимар, *Туннельный эффект в сверхпроводниках и его применение* (Москва: Мир: 1974).
- 8. А. А. Лухвич, Влияние дефектов на электрические свойства металлов (Минск: Наука и техника: 1976).
- В. С. Копань, А. В. Лысенко, Физика металлов и металловедение, 29, № 5: 1074 (1970).
- 10. Л. П. Булат, І. А. Драбкін, Г. І. Пивоваров, В. Б. Освенський, *Термоелектрика*, № 4: 27 (2008).