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The problems of ultrathin stable electrically continuous metal films fabrication 

and their electron-transport properties are discussed. To prevent the coagula-
tion process of metal grains during metal film condensation, the surfactant un-
derlayers utilizing is discussed. Analysis of current theoretical concepts con-
cerning electron-transport properties of metal film is performed. The experi-
mental data are explained within the scope of the modern theoretical models. 

Обговорено проблему створення надтонких (товщина шару від 2 нм до 50 

нм) електрично суцільних стабільних провідних шарів металів і вивчення 

їхніх електричних властивостей. Розглянуто можливість застосування 

сурфактантних підшарів для запобігання коаґуляції зародків кристалі-
зації в процесі росту плівок. Здійснено аналізу сучасного стану модельних 

уявлень про перенесення заряду в металевих зразках обмежених розмі-
рів, і на його основі проведено трактування результатів експерименталь-
ного дослідження надтонких металевих плівок. 

Обсуждается проблема создания сверхтонких (толщина слоя от 2 нм до 50 

нм) электрически сплошных проводящих стабильных слоев металлов и 

исследования их электрических свойств. Рассмотрена возможность при-
менения сурфактантных подслоев для предотвращения коагуляции заро-
дышей кристаллизации в процессе роста пленок. Сделан анализ совре-
менного состояния модельных представлений о переносе заряда в метал-
лических образцах ограниченных размеров, и на его основе проведена 

трактовка результатов экспериментального исследования сверхтонких 

металлических пленок. 
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1. INTRODUCTION 

Thin layers of substance are basic elements of many devices of modern 

electronic techniques. The further development of electronics is im-
possible without microminiaturisation of electronic systems by nano-
technology, in particular, by techniques of stable ultrathin covering 

formation. 
 Properties of ultrathin slabs can essentially differ from properties 

concerning thick layers, which are used in up-to-date engineering. 
This difference is caused, above all, by prevailing influence of the sur-
face phenomena on ultrathin layer structure and electric parameters. 
In our work, the current state of theoretical and experimental re-
searches on ballistic charge transport in ultrathin (layer thicknesses 

are 2—12 nm) electrically continuous metal films (temperature coeffi-
cient of resistance β > 0) under the condition of inequality realisation 

d < l is analysed. Here, d is the film thickness; l is the charge mean free 

path. Crystal lattice parameters and the crystalline average linear 

sizes are considered as peculiarities of film structure. 
 The ultrathin electrically continuous metal film deposition on di-
electric substrate surface is a problem of considerable difficulty due to 

the action of surface tension forces. These phenomena lead to coagula-
tion of metal particles. As a result, there is some metal layer critical 
thickness dc, at which current starts to flow into a metal film (percola-
tion threshold is observed here). The mean dc is determined by techno-
logical features of film formation (the rate of material condensation, 

the substrate temperature at layer deposition, the modes of further 

heat treatment) as well as by the properties of condensing material, in 

particular by its fusion temperature. Essential decrease of dс may be 

reached at epitaxial growth of a metal film on the oriented substrate. 

The use of surfactant underlayers of subatomic thickness preliminary 

deposited on a dielectric substrate inhibits coagulation of metal con-
densates in other effective way of dс decrease. 
 The mentioned technique makes possible formation of ultrathin con-
ductive coatings of several atom layers of metal in thickness. In par-
ticular, the Hall voltage investigation on 1—3 nm thickness chrome 

films deposited on germanium surfactant underlayer was performed in 

[1]. Electrically continuous ultrathin films of some metals also have 

been obtained due to application of surfactant underlayer (see, for ex-
ample, [2—4]). We shall analyse some peculiarities of modern view on 

the mechanisms of charge carrier’s relaxation in ultrathin layers and 

the application of these theoretical models for the experimental results 

treatment. 
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2. CHARGE TRANSPORT MODELS IN SIZE-LIMITED METAL 
SAMPLES 

Thin film is a classical example of the size-limited sample in which sur-
face phenomena play an essential role owing to the restriction in one of 

the film sizes. The relative contribution of these phenomena can vary 

from the negligibly small to the dominating due to the thickness d 

changes. In Figure 1, the areas of films thickness are specified for vari-
ous mechanisms of carrier relaxation in metal films. In a mode of dif-
fusive charge-transport scattering, which is observed in films of mi-
cron thickness, the charge transport phenomena are well described 

within the framework of free electron model. The electrophysical prop-
erties of films are basically determined by the processes occurring in 

the film volume. When the mean free path of electron becomes com-
mensurable to the thickness of a metal film d, the electron-transport 

phenomena are essentially influenced by electron scattering on film 

surface. Thus, the contribution of surface scattering to the total elec-
tron relaxation time is close to the contribution of volume scattering. 

The kinetic parameters thickness dependence of electrically continu-
ous metals films is described within the framework of the classical size 

effect theory (the theory of Fuchs—Sondheimer [5, 6] and its modifica-
tions) and internal size effects theory (Mayadas—Shatzkes [7], Tellier—
Tosser—Pichard [8], Varkusz [9] models). Those are the models, in 

 

Fig. 1. Charge transport models in finite-size metal samples.
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which the contribution to total relaxation time of electron surface 

scattering on flat external film surfaces and on grain boundaries in the 

film volume are considered. The account of the electron scattering con-
tribution on grain boundaries in the most cases is necessary, as in the 

massive polycrystalline metal samples, the mean linear grain sizes es-
sentially exceed the charge carriers mean free path l. The mean grain 

linear sizes in metal films are usually less or commensurable to l. 
 With further reduction of metal layer thickness when the electron 

mean free path satisfies the condition d < l, the quasi-ballistic electron 

transport in a film (without changes of the power spectrum of electron 

in metal film) is realised. Thus, charge carriers surface scattering in 

metal film becomes dominating. The contribution of surface scattering 

has essentially influenced the macroscopic surface inhomogeneity be-
cause the mean linear grain sizes are commensurable to film thickness. 

The quasi-ballistic electron transport in metal films can be described 

by size dependencies of kinetic coefficients proposed in Namba theory 

[10] and within the framework of polycrystalline layer heterogeneous 

cross section [11]. The treatment of experimental data by the men-
tioned theories makes possible the reliable calculation of the average 

amplitude of one-dimensional surface asperity h. The calculated values 

h correlate well with the results of direct microscopy tunnel scanning 

structure investigation. It should be noticed that in terms of quasi-
ballistic electron transport the film state and the surface morphology 

play a dominant role in charge carriers’ relaxation. The detailed analy-
sis considered above of the geometrical size effect theories and the dis-
cussion of the possibilities of their application for experimental results 

explanation was carried out in [12]. 
 When the film thickness does not exceed 5—8 nm, the quantum ef-
fects, which have influence on electron transport in film, are possible. 
We will consider the general regularities of these phenomena on the ex-
ample of the influence of size restriction along Z-axis in thin film thick-
ness direction in Sommerfeld electron gas, possessing a spherical form 

of Fermi surface. In an initial stage of size restriction, the kz quantiza-
tion (kz is quasi-impulse component) is observed. As a result, there is a 

set of the discrete resolved kz states on spherical Fermi surface. The evi-
dent display of quasi-impulse component quantization is oscillation de-
pendences of the metal film kinetic on its thickness coefficient by the 

oscillation period, which depends on electron de Broglie wavelength. 
 Further restriction of sample sizes in Z-direction leads to the change 

of chemical potential level position and to important changes of elec-
tronic structure in metal sample. As a result, the oscillation depend-
ences of Fermi energy on a film thickness occur. In this case, the treat-
ment of experimental results of kinetic phenomena in films is rather 

inconvenient. The calculation of simple metal electron structure of 

free films was performed in a number of works [13—16], etc. It was 
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shown that the given phenomenon occurs in the films which thickness 

does not exceed 7—10 atomic layers that is d < 2—3 nm. 
 Existence of changes in the transport phenomena caused by dimen-
sional quantization was predicted by Lifshitz and Kosevich [17]. Ex-
perimentally quantum size effect was found in [18] in the research of 

semimetal bismuth films properties. The theory of this phenomenon was 

developed by Sandomirski [19]. Further investigations of size quantiza-
tion effect on semimetal and semiconductor films properties were im-
plemented in a number of scientific institutions, in particular, under the 

supervision of Prof. Komnik [20]. Quantum size effects are the most 

brightly displayed in semimetal films. The length of the electron de Bro-
glie wavelength in these materials is 10 times larger than interatomic 

distances and, consequently, the interference of electronic waves is in-
fluenced poorly by imperfections of film surface. In metal films, the 

situation is essentially different as the de Broglie electron wavelength is 

commensurable to interatomic distances. Therefore, to observe oscilla-
tions of the kinetic coefficients in thin metals layers, it is necessary to 

provide high perfection of samples surface structure. 
 Modern theoretical approaches to quantum size effects in kinetic phe-
nomena of metal films have been developed. In the majority of works, 
Kubo formalism is used for calculation of surface scattering effect on 

charge transport under the conditions of size quantization [21—24], be-
ing considered the contributions of separate scattering mechanisms, 
which are non-additive (that is the Mathiessen’s rule is violated). The ef-
fect of a surface on an electronic system is considered by introduction of 

a surface potential to Hamiltonian function. Under constant chemical 
system potential, the density of states and, accordingly, the conductivity 

in a film plane oscillate with the period, which is equal to a half-length of 

de Broglie electron wave. 
 A peculiarity of the mentioned works is ignoring of foreign disper-
sion of charge carriers contribution in the current carriers relaxation. 

In the given approach, it is impossible to carry out any coupling of 

quantum theories results with the known classical theories. In Ref. 

[25], an attempt was made to coordinate conclusions of quantum and 

classical theories by introduction of the dissipating potentials caused 

by the surface impurities on both film surfaces into model Hamilto-
nian. Owing to it, the film conductivity size dependences reminding 

similar Fuchs—Sondheimer theory formalism were received. As a re-
sult, quantization influence on σ occurs from quasi-classical approach 

by the consideration of partial conditions nature and taking into ac-
count new treatment of angular dependence of smooth surface reflec-
tion parameters. The approach [25] to the solving of this problem was 

developed in [26], where the relationships describing the effect of sur-
face inhomogeneity of various configurations on films conductivity 

were obtained. The results of the theory were investigated when treat-



134 R. I. BIGUN, Yu. A. KUNITSKY, and Z. V. STASYUK 

ing the data of the experimental researches in CoSi2 films carried out 

in numerous works [27] and for gold films [28]. According to the esti-
mation [26], on the average a metal film surface can be considered as 

atomically smooth, and a quantization condition is the existence of 

parallel to each other sites of the L×L size on the surfaces, where 

L/а > 2(d/a)1/2. Here, d is the layer thickness, a is crystal lattice con-
stant. Features of quantum transport should manifest themselves in 

films of the metals, the thickness of which does not exceed 10 nm. 
 The problems of transition from classical to quantum charge trans-
port at reduction of film thickness were considered in numerous theo-
retical works of Moroz and Makarova (see, for example, [29—31]) and 

Mejerovich with collaborates (see, for example, [32—34]). In these 

works, questions of the electronic waves interference with surface and 

the possibilities of kinetic coefficient oscillations were discussed in de-
tails. In Ref. [35], new basic approaches to experimental formation of 

metal size-quantum systems were proposed. 
 In summary, we noticed that, in works stated above, only qualitative 

physical picture of the influence of classical and quantum size effects 

on the peculiarities of charge transport in metals films is presented 

due to insufficient volume of the publications. An extended review of 

theoretical works with corresponding mathematical conclusions is pre-
pared for printing and will be published in the nearest future. 

2. EXPERIMENTAL RESEARCH OF SIZE QUANTIZATION EFFECT 

ON CHARGE TRANSPORT IN METAL FILMS 

Influence of kinetic phenomena on geometrical size effect in metal films 

was being investigated for years. The results of these researches were 

discussed in detail in a number of works. Therefore, we will consider 

only the experimental works devoted to studying of size quantization 

influence on the phenomena of charge transport in metal films and 

works in which issues of transition from prevailing quantum to quasi-
classical charge transport are discussed. 
 Experimental researches of size quantization effect on charge 

transport in metals films were first carried out by Fisher and Hoff-
mann [36—38]. Size dependences of platinum films resistivity in thick-
ness range 3—300 nm were investigated. Films were deposited on pol-
ished glass by thermal evaporation under high vacuum condition 

(pressure of residual gases 10−5
 Pa). It was shown that conductivity 

size dependence for thick films (d > 10 nm) is in good agreement with 

similar dependence predicted in Fuchs—Sondheimer theory. Within the 

range of thickness 8 < d < 10 nm, the size dependence of σ is described 

by the approximated formula of Namba theory [11] considering pres-
ence of macroscopic irregularity on polycrystalline film surface. In the 

range of small Pt film thickness (d < 8 nm), electrical-current size os-
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cillations under constant voltage applied to the film showed the oscil-
lation period size dependences with d0 = λF/2, where λF is electron 

Fermi wave length. 
 There are a few experimental works devoted to the research of size 

quantization effect on the electron transport phenomena in such metal 
films. Probably, the scarcity of these works is caused by the complexity 

of experiments with this type of metal films. In the majority of the theo-
retical works, the data of electrical properties of epitaxial CoSi2 films 

were used. Metallic behaviour of electron transport in CoSi2 films is re-
tained until the thickness d ∼ 1 nm and, in the range of small thickness, 
the behaviour of conductivity size dependences essentially differs from 

those foreseen in classical size effect theories. As an illustration, in Fig. 
2, the results of CoSi2-films resistivity size dependences calculated by 

four theoretical models of quantum size effect (continuous curves) and 

some experimental data (the points) are presented [27]. 
 The influence of size quantization on charge transport in lead and gold 

films was studied in [39, 40]. The conductivity and the Hall constant of 

lead films under the conditions of size quantization were studied in [41, 
42]. The oscillations of resistivity with thickness change of Ag, In, and 

Ga films deposited on annealed gold and silver films were observed in 

[43]. The influence of quantum size effect for sliding electrons on elec-
tronic conductivity of films of refractory metals was studied in [44]. 
 Direct comparison of experimental results with the corresponding 

theoretical modelling representations in some cases is inconvenient. 

Therefore, we will consider the possibility of such a comparison analys-
ing data experimentally obtained in our works. Relative contribution 

of surface scattering to total time of the relaxation of current carriers 

 

Fig. 2. Size dependences of CoSi2 resistivity. Points–experimental data. 
Theoretical curves: FC–[24]; mSXW–[25]; TA–[23]; TJM–[21]. 
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increases with the reduction of film thickness. Thus, if the possible 

change in the film structure is neglected with the reduction of its 

thickness, the residual conductivity, which can be written in the form 

 σres = 1/[ρ(d) − ρ∞], (1) 

is the feature of surface scattering contribution. Here, ρ(d) is resistiv-
ity of metal film d in thickness, ρ∞ is metal film with infinite thickness 

(d → ∞) resistivity; a structure being similar to the structure of the 

investigated film. The analysis of classical size effect theoretical ex-
pressions [4, 5] showed that, in all cases, the residual conductivity σres 

is directly proportional to the film thickness d. In particular, for the 

theory of Fuchs—Sondheimer, 

 σres = 8d/[3ρ∞l(1 − p)]. (2) 

Here, l is the mean free path of current charge carriers, р–coefficient 

of surface reflexion. Linearity of the given dependency is broken in the 

area of thickness, at which quasi-ballistic charge transport takes place 

l > d [10, 11]. In this case, the film thickness is irregular in charge 

transport direction due to the macroscopic surface asperities existing 

in a polycrystalline film. It should be noted that size dependence of 

polycrystalline film resistivity in the presence of surface asperities 

with amplitude h was obtained in [11]: 
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l ph h
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− −

∞

⎧ ⎫⎡ ⎤ ⎡ ⎤−⎪ ⎪⎛ ⎞ ⎛ ⎞ρ = ρ − + −⎢ ⎥ ⎢ ⎥⎨ ⎬⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎢ ⎥ ⎢ ⎥⎪ ⎪⎣ ⎦ ⎣ ⎦⎩ ⎭
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This dependence may be easily transformed into corresponding formu-
lae of theories [7] and [9], provided that h << d . Here, d  is an average 

thickness of a non-uniform thickness film, ρ0 and l0–resistivity and 

the mean free path of current charge carriers (the characteristic of a 

single crystal sample), f(α)–grain-boundary function of Mayadas—
Shatzkes [7]. 
 In the case, when h ≤ d , considering that ρ0 = ρ∞f(α), and l = l0f(α) 

[7], the expression (3) is transformed into the known approximated ex-
pression ( )dρ = ρ  of Namba theory [10]: 
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1 1 1
8

l ph h
d

d d d

− −

∞
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. (4) 

The formula (4) describes well films resistivity size dependence in an 

initial area of film thickness, at which the deviation from dependency 

(3) predicted by the theory [4, 5] is observed. In Figure 3, the depend-
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ence ρ(d ) of copper films during metal condensation on polished glass 

substrate cooled to Т = 78 K under the ultrahigh vacuum conditions 

(р ≤ 10−7
 Pa) is shown. The comparison between the experimental 

points fixed by computer during film deposition and the theoretical 
curve calculated from (4) under the condition h = 5.4 nm shows that 

expression (4) well describes the dependence ( )ρ = ρ d  for the films 

thickness of which exceeds 8 nm. It should be noted that d is film mass 

thickness here (and below). The experimental data deviation from 

theoretical curve is caused by transition to quantum charge transport. 

All the researches were carried out on electrically continuous films 

(β > 0). In particular, for as deposited films, β was measured for the 

temperature range from 78 K (liquid nitrogen) to 90 K (liquid oxygen). 
 In the quantum electron transport, the conductivity size dependen-
cies σres differ slightly. The theoretical expressions obtained by 

Fishman and Calecki [23, 24] are the most convenient for direct com-
parison with experimental data: 

 
⎧ ⎫σ −⎨ ⎬π⎩ ⎭

2
res 5 2 3

6 1
~ 1

(3 )
d

dn
, (5) 

where n is the current carriers concentration, d–film thickness. This 

expression may be transformed to σres ∼ dα, where α changes from 2.1 

(pure metals) to 6 (semiconductors). The power dependence of metal 
film residual conductivity on the film thickness was obtained also by 

Trivedi and Ashcroft [23]: σres ∼ d2. As noted above, the expressions of 

 

Fig. 3. Dependences of ρres = ρres(d) as-deposited cupper film (Т = 78 K). 
Points–experimental data; continuous curve–approximated data of Namba 

theory expression at h = 6.5 nm.
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theories [23, 24] were successfully applied for experimental size de-
pendences description in many works. 
 The techniques for preparation of ultrathin electrically continuous 

copper, gold, silver, and palladium films were developed in [45—50]. The 

experiment was carried out under ultrahigh vacuum conditions (the 

pressure of residual gases р ≤ 10−7
 Pa, the pressure of active components 

was less than 10−9
 Pa) in evacuated glass devices. To overcome the influ-

ence of metal-condensates coagulation on the glass substrate thermally 

degasified for a long time (about 40 hours at t = 400°С in vacuum not 

worse than р = 10−5
 Pa), the surfactant (germanium, silicon, and anti-

mony) underlayers of the thickness of some atomic layers were prede-
posited on surface directly before metal films deposition. The deposition 

techniques for metal layers the crystal grain sizes D of which did not de-
pend on the film thickness and thickness did not exceed 50—60 nm were 

developed. Metal films and surfactants were deposited on a cooled sub-
strate (Т = 78 K) with condensation speed not exceeding 0.01 nm/s. The 

film thermostabilization was carried out with low-temperature anneal-
ing at Т ≤ 373 K. Application of this technique with change of thickness 

surfactant underlayers predeposited on the substrate made possible to 

prepare the metal films with presubscribed linear crystalline sizes on the 

parallel plane substrate. These facts were confirmed by experimental 
results of electron-microscopy and electron-diffraction studies of metal 
films and scanning tunnelling microscopy of surface topology investiga-
tion of palladium film. 

 

Fig. 4. Size dependences of gold films residual conductivity ρres = ρres(d) as-
deposited on germanium surfactant underlayers with thickness of 3 nm (1), 2 

nm (2), 1 nm (3) and deposited on clean glass surface. Points–experimental 
data; curve segments–linear approximation. 
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 The investigation of film conductivity during film deposition in a con-
tinuous mode and fixed thickness films annealed at Tan = 293 K or 

Tan = 373 K were performed. The application of surfactant underlayers 

made possible to decrease considerably the critical metal film thickness 

corresponding to the transition to electrically continuous metal layers 

(β > 0). The metal films with stable (at temperatures not exceeding 300 

K) and reproduced electrical properties with thickness d ≥ 2—3 nm were 

obtained. The size dependences of residual conductivity in metal films in 

the thickness range 3—8 nm are well described using expression (5) of the 

theory [24]. Those results are confirmed by the data in Figs. 4 and 5 ob-
tained for as-deposited palladium films on Ge underlayers deposited on 

glass substrates and on Al underlayers of subatomic thickness ∼ 0.3 nm. 
 The analysis of experimental results in Figs. 4 and 5 shows that in the 

range of large thickness d > 12—15 nm the size dependences of residual 
conductivity σres may be explained within the framework of classical and 

internal size effects. In transitive area of thickness 8 < d < 12 nm, be-
haviour of dependence of σres = σres(d) can be explained by theories [11, 

12]. If d < 8 nm, the film peculiarities of quantum transport display the 

behaviour σres ∼ dα. In the films deposited on surfactants underlayers, 

the σres dependence can be observed up to the thickness of 3—4 nm. For 

the metal films as-grown on pure glass substrate, the quantum electron-
transport behaviour is narrow and its lower limit reaches only 5—7 nm. 
The behaviour deviation of σres ∼ dα

 in the smaller thickness region is 

caused by both gradual transition to island structural state of metal lay-

 

Fig. 5. Size dependences of palladium films residual conductivity ρres = ρres(d) 
as-deposited on Al surfactant underlayers with mass thickness 0.3 nm (1) and 

clean glass surface (2). Points–experimental data; curve segments–linear 

approximation. 
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ers, and chemical potential change with the film thickness d that, in 

turn, leads to the deviation from the approach taken in theories [23, 24]. 
 From the data considered above, it is also clear that on σres size de-
pendences any oscillations are absent. Measured oscillation is the con-
sequence of the interference of electron wave reflected by film surface. 

For fine-grained layers, the coherent electron wave reflexion is hardly 

probable. This fact was widely discussed in theoretical and experimen-
tal works. 
 The issue concerning the behaviour of σres average thickness depend-
ence is of significance in polycrystalline film research. It should be also 

noted that investigation of surfactant underlayer effect on the forma-
tion of ultrathin conductive films remains a problem of importance. As 

known from literature, this problem is currently central for purpose-
ful techniques development for formation of conductive layers with 

prespecified structure and electric properties. 

4. CONCLUSIONS 

The problem of ultrathin metal film formation and study of their elec-
trical properties have been analysed. These films may be used in mod-
ern micro- and nanoelectronics. The use of surfactant underlayers of 

subatomic thickness allows the control of the processes of formation 

and growth of metal film on the surface of dielectric substrates. Elec-
trically stable metal films under low temperature condition (Т ≤ 370 K) 

with different mean linear crystal sizes on surface of dielectric sub-
strates can be formed by the way of supervised change of surfactant 

underlayers parameters. 
 The possibility of harnessing of classical and quantum size effects 

modern theoretical models for analysis of experimental data results of 

charge transport phenomena in continuous metal film (2—3 nm—100 nm) 
is discussed. The modern theories of quantum size effect are used to ex-
plain the film conductivity size dependence when the film electrochemi-
cal potential is close to a similar parameter of bulk material. The possi-
bility of using different theoretical models for explanation of experi-
mental results of transport phenomena research in metal films in a wide 

range of film thickness is confirmed by analysis of modern modelling 

construction concepts on electron-charge transport in thin metal layers. 
 The possibility of control of structure and electric properties of 

metal films is supported by the example of experimental results dis-
cussion for some metal films deposited on surfactant underlayer. 
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