© 2009 ІМФ (Інститут металофізики ім. Г. В. Курдюмова НАН України) Надруковано в Україні. Фотокопіювання дозволено тільки відповідно до ліцензії

PACS numbers: 61.82.Rx, 78.55.Hx, 78.60.-b, 81.07.Bc, 81.20.Fw, 81.40.Wx, 82.75.Fq

## Синтез и люминесцентные свойства наноразмерного гидроксиапатита кальция, активированного ионами Eu<sup>3+</sup>

Е. В. Зубарь

Физико-химический институт им. А. В. Богатского НАН Украины, Люстдорфская дорога, 86, 65080 Одесса, Украина

Наноразмерный гидроксиапатит кальция (ГАК), активированный ионами  $\mathrm{Eu}^{3+}$ ,  $\mathrm{Ca}_{10(1-x)}\mathrm{Eu}_{10x}(\mathrm{PO}_4)_6(\mathrm{OH})_2$  (x=0,01) получен путем осаждения из водного раствора и золь—гель-методом. Средний размер частиц образца, полученного осаждением из водного раствора, составил 40 нм. Методом люминесцентной спектроскопии установлено, что характер распределения ионов  $\mathrm{Eu}^{3+}$  по позициям Са в структуре ГАК определяется как концентрацией активатора, так и условиями синтеза.

Нанорозмірний гідроксиапатит кальцію (ГАК), активований йонами  $\mathrm{Eu}^{3+}$ ,  $\mathrm{Ca}_{10(1-x)}\mathrm{Eu}_{10x}(\mathrm{PO}_4)_6(\mathrm{OH})_2$  (x=0,01) синтезовано шляхом осаду з водного розчину та золь—ґель-методою. Середній розмір частинок зразка, одержаного шляхом осаду з водного розчину, дорівнює 40 нм. Методою люмінесцентної спектроскопії встановлено, що характер розподілу йонів  $\mathrm{Eu}^{3+}$  за позиціями Са в структурі ГАК визначається як концентрацією активатора, так і умовами синтези.

Nanosized calcium hydroxyapatite (CHA) activated with  $\mathrm{Eu^{3^+}}$  ions is prepared by precipitation from aqueous solution and sol-gel method. The average particle size of the sample prepared by precipitation from aqueous solution is 40 nm. As revealed by luminescent spectroscopy method, the character of  $\mathrm{Eu^{3^+}}$  distribution on calcium sites in CHA structure is determined by both the activator concentration and preparation conditions.

**Ключевые слова:** наночастицы, гидроксиапатит кальция, золь-гельметод, люминесценция, структура.

(Получено 12 ноября 2008 г.)

Соединения и твердые растворы семейства апатитов находят широкое применение в качестве катализаторов и основ люминесцентных

материалов. В последнее время значительное внимание уделяется проблеме создания новых высококачественных материалов для костного протезирования. Наиболее эффективным материалом для замены поврежденной костной ткани считается наноразмерный гидроксиапатит кальция (ГАК)  $Ca_{10}(PO_4)_6(OH)_2$ . Современная медицина предъявляет комплекс достаточно высоких требований к материалу-имплантату. В частности, такие биоматериалы должны обладать определенными прочностными характеристиками в сочетании со сравнительно высокой растворимостью в биосредах, а также стимулировать остеогенез. Дисперсная структура и высокая удельная поверхность наночастиц ГАК обеспечивает их взаимодействие с клетками организма и создаёт тем самым благоприятные возможности для лечения ряда дефектов костных тканей. Кроме того в ряде работ [1, 2] продемонстрированы перспективы использования наноразмерного ГАК, активированного ионами Eu<sup>3+</sup> и Tb<sup>3+</sup>, в качестве носителя ДНК в биохимии.

Вопрос о характере изоморфного замещения лантанидов в ГАК (т.е. о распределении ионов лантанидов в решетке апатитов) представляется актуальным, так как химическая модификация апатитов лантанидами является одним из путей улучшения свойств последних как катализаторов, биоматериалов, люминофоров. Цель настоящей работы заключалась в изучении влияния условий синтеза на распределение и люминесцентные свойства ионов Eu<sup>3+</sup> в ГАК.

Известно, что ГАК кристаллизуется в гексагональной системе с пространственной группой  $P6_3/m$  [3]. Тетраэдры  $PO_4$  размещены в структуре таким образом, что образуют две неэквивалентные позиции для распределения катионов Ca (рис. 1). Позиция Ca(1) имеет чисто кислородную координацию с N=9, тогда как в позиции Ca(2) атомы кальция окружены шестью атомами кислорода, входящими в состав групп  $PO_4^{3-}$ , и одной группой  $OH^-$ . Отношение концентраций Ca(1)/Ca(2) равняется  $\cong 0.66$  [3].

Наноразмерный гидроксиапатит кальция, активированный ионами  $\mathrm{Eu^{3^+}}$ ,  $\mathrm{Ca_{10(1-x)}Eu_{10x}(PO_4)_6(OH)_2}$  (x=0,01) был получен двумя методами: путем осаждения из водного раствора и золь—гель-методом. В ходе реакции осаждения к нагретому до  $60^{\circ}\mathrm{C}$  водному раствору ( $\mathrm{NH_4}$ )<sub>2</sub> $\mathrm{HPO_4}$  при постоянном перемешивании добавляли раствор  $\mathrm{Ca(NO_3)_2}$ . рН раствора поддерживалось на уровне 10, отношение  $\mathrm{Ca^{2^+}/PO_4^{3^-}=1,67}$ . Количества исходных компонентов рассчитывали на основе следующего уравнения материального баланса:

$$10\text{Ca}(\text{NO}_3)_2 + 6(\text{NH}_4)_2\text{HPO}_4 + 8\text{NH}_4\text{OH} \rightarrow$$
  
  $\rightarrow \text{Ca}_{10}(\text{PO}_4)_6(\text{OH})_2 + 20\text{NH}_4\text{NO}_3 + 6\text{H}_2\text{O}.$ 

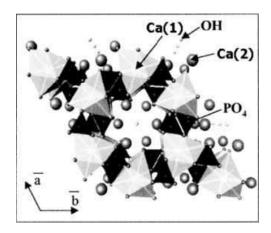
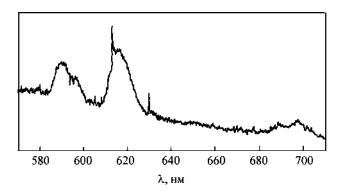
Образовавшийся осадок отфильтровывали и сушили на воздухе. Аналогичным путем был получен ГАК, активированный ионами

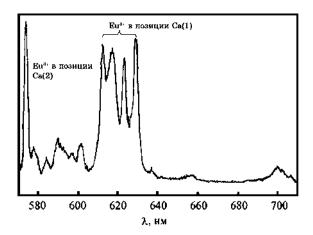
 ${\rm Eu^{3^+}}$ . В качестве европийсодержащего компонента использовали  ${\rm Eu(NO_3)_3}$ . Номинальное содержание активатора составляло 1 ат.%. Для сравнения физико-химических свойств  ${\rm \Gamma AK:Eu^{3^+}}$ , полученного осаждением из водного раствора, со свойствами продукта его высокотемпературного обжига образцы были подвергнуты термической обработке при  $1000^{\circ}{\rm C}$  в течение 3,5 ч.

При получении ГАК золь—гель-методом смесь растворов  $Ca(NO_3)_2 \cdot 4H_2O$ ,  $Eu(NO_3)_3$  и лимонной кислоты выдерживалась 20 мин при комнатной температуре, затем к ней медленно добавляли водный раствор  $(NH_4)_2HPO_4$ . После выдержки в течение 15 мин температуру смеси поднимали до  $70-80^{\circ}C$  для обеспечения полноты протекания реакции. Затем раствор выпаривали и сушили полученный белый гель при  $120^{\circ}C$ . Образовавшийся коричневый осадок подвергали термической обработке сначала при  $650^{\circ}C$  в течение 10-15 мин, затем при  $1000^{\circ}C-2$  ч. Контроль фазового состава полученных таким образом образцов проводили методом рентгенофазового анализа  $(P\Phi A)$  на дифрактометре ДРОН-2 с применением  $CuK_{\alpha}$ -излучения. Люминесцентные измерения были выполнены в области 240-800 нм на спектрометре CJJ-1 (JOMO), снабжённом ксеноновой лампой ДКСШ-150 в качестве источника возбуждения свечения.

Рентгенограмма образца, полученного осаждением из водного раствора, содержала рефлексы, соответствующие рефлексам ГАК. При этом средний размер частиц этого образца, рассчитанный с использованием формулы Шеррера, составил  $\cong 40$  нм. Согласно данным РФА обжиг при  $1000^{\circ}$ С наноразмерного образца приводит к формированию хорошо окристаллизованного ГАК, о чем свидетельствует появление на рентгенограмме трех индивидуальных пиков при  $20 \approx 31,83,\ 32,10$  и 32,90 [4]. Размер частиц продукта высокотемпературного обжига составил 1-2 мкм. Отметим также, что на рентгенограмме образца, полученного золь—гель-методом, помимо рефлексов ГАК присутствуют рефлексы, соответствующие примесной фазе —  $\beta$ -Ca<sub>3</sub>(PO<sub>4</sub>)<sub>3</sub>.

Спектр люминесценции ионов  $Eu^{3+}$  в ГАК, полученном осаждением из водного раствора, представлен на рис. 2. Спектр состоит главным образом из трех групп полос в области 580-600, 608-630, 685-715 нм. Очевидно, что этот спектр обусловлен  $^5D_0 \rightarrow ^7F_J$  переходами в ионах  $Eu^{3+}$ . Хорошо известно, что спектр люминесценции ионов  $Eu^{3+}$  в позиции Ca(2) в структурах апатитов характеризуется наличием аномально интенсивной полосы при 574 нм, связанной с  $^5D_0 \rightarrow ^7F_0$  переходом в ионе  $Eu^{3+}$  [5, 6]. При этом высокая интенсивность  $^5D_0 \rightarrow ^7F_0$  перехода характерна для соединений, в которых ионы  $Eu^{3+}$  занимают позиции, характеризующиеся низкой точечной симметрией и высокой степенью ковалентности связи Eu-лиганд [7]. В спектре люминесценции ионов  $Eu^{3+}$  в ГАК, полученного осаждением из водного раствора, полоса, соответствующая переходу

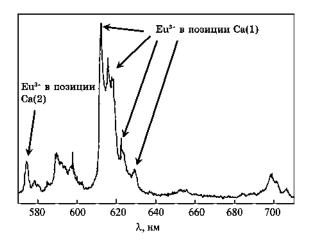





Рис. 1. Структура гидроксиапатита кальция вдоль направления [001].

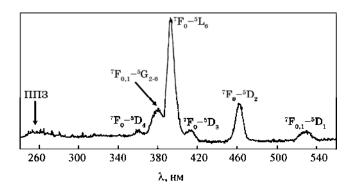


**Рис. 2.** Спектр люминесценции ионов  $Eu^{3+}$  в ГАК, полученном осаждением из водного раствора ( $\lambda_{\text{возб.}} = 396$  нм).

 ${}^5D_0 \to {}^7F_0$  отсутствует (рис. 2). Это означает, что ионы  $\mathrm{Eu}^{3+}$  преимущественно занимают позиции  $\mathrm{Ca}(1)$ .


Как видно из рис. 3, высокотемпературный обжиг наноразмерного ГАК помимо повышения интенсивности люминесценции сопровождается значительными изменениями в спектральном составе излучения. В частности, в спектре наблюдается чрезвычайно интенсивная полоса при 574 нм, соответствующая переходу  $^5D_0 \rightarrow ^7F_0$ , а также уменьшается ширина полос, так что в спектре проявляется тонкая структура. Спектр люминесценции ионов  $\mathrm{Eu}^{3+}$  в продукте высокотемпературного обжига ГАК при возбуждении в области  $\lambda_{\text{возб.}} = 396$  нм состоит из нескольких групп полос в области 570–580, 580–605, 605–635, 650–660, 695–710 нм (рис. 3). Из сравнения спектров люминесценции ионов  $\mathrm{Eu}^{3+}$  (рис. 2, 3) можно заключить, что в продукте высокотемпературного обжига ГАК, полученного

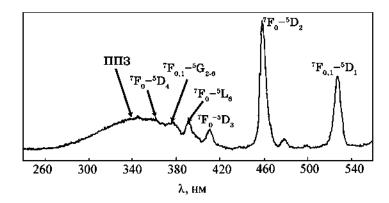



**Рис. 3.** Спектр люминесценции ионов  $Eu^{3+}$  в продукте высокотемпературного обжига ГАК, полученного осаждением из водного раствора ( $\lambda_{\text{возб.}} = 396$  нм).

осаждением из водного раствора, ионы  $\mathrm{Eu}^{3^+}$  находятся как в позиции  $\mathrm{Ca}(1)$ , так и в позиции  $\mathrm{Ca}(2)$ . Действительно, помимо ряда полос, соответствующих переходу  ${}^5D_0 \to {}^7F_2$ , связанных с ионами  $\mathrm{Eu}^{3^+}$  в положении  $\mathrm{Ca}(1)$ , в спектре (рис. 3) присутствует полоса с максимумом при 574 нм, обусловленная переходом  ${}^5D_0 \to {}^7F_0$  в ионах  $\mathrm{Eu}^{3^+}$ , находящихся в позициях  $\mathrm{Ca}(2)$  [5, 6]. Отметим также, что полосы соответствующие  ${}^5D_0 \to {}^7F_0$  и  ${}^5D_0 \to {}^7F_2$  переходам имеют сопоставимую интенсивность.

Факт повышения интенсивности люминесценции мы связываем с увеличением растворимости оксида европия в ГАК в результате высокотемпературного обжига. Можно полагать, что при получении ГАК:Eu<sup>3+</sup> методом осаждения из водного раствора только некоторая часть ионов европия, находящихся в реакционной смеси, входит в кристаллическую решетку конечного продукта. Как упоминалось выше, ионы Eu<sup>3+</sup> в образце ГАК, полученном осаждением из водного раствора, предпочтительно занимают позиции Са(1). Таким образом, экспериментальные результаты указывают, что высокотемпературный обжиг сопровождается увеличением растворимости Eu<sub>2</sub>O<sub>3</sub> и изменением характера распределения ионов Eu<sup>3+</sup> в решетке ГАК. Авторы работы [8] изучили люминесцентные свойства ионов Eu<sup>3+</sup> во фторапатите кальция и обнаружили, что в апатите, полученном путем твердофазной реакции, ионы Eu<sup>3+</sup> преимущественно занимают позиции Са(2), тогда как в апатитах полученных осаждением из водного раствора — позиции Са(1). Последующий обжиг при 900°C образца, полученного осаждением из водного раствора, сопровождается, по мнению авторов [8], миграцией ионов  $Eu^{3+}$  из позиции Ca(1) в позицию Ca(2). Предпочтительность в выборе позиций Ln<sup>3+</sup> в структурах апатитов, по мнению авторов, обу-




**Рис. 4.** Спектр люминесценции ионов  $Eu^{3^+}$  в ГАК, полученном золь-гельметодом ( $\lambda_{\text{возб.}} = 396$  нм).



**Рис. 5.** Спектр возбуждения люминесценции ионов  $Eu^{3^+}$  в продукте высокотемпературного обжига ГАК, полученного осаждением из водного раствора ( $\lambda_{\text{люм.}} = 612$  нм).

словлена условиями синтеза. Наши данные согласуются с результатами, представленными в работе [8], однако наша интерпретация иная. Изменение характера распределения ионов  $\mathrm{Eu}^{3^+}$  по позициям Са в результате высокотемпературного обжига на наш взгляд связано не с миграцией ионов активатора, а с увеличением концентрации ионов лантанида в решетке ГАК.

На рисунке 4 представлен спектр люминесценции ионов  $Eu^{3+}$  в  $\Gamma AK$ , полученном золь—гель-методом, при возбуждении в области  $\lambda_{\text{возб.}} = 396$  нм. Видно, что он имеет много общего со спектром продукта высокотемпературного обжига образца, полученного осаждением из водного раствора. Однако имеются и некоторые отличия. В частности, интенсивность полосы при 574 нм, соответствующей пе-



**Рис. 6.** Спектр возбуждения люминесценции ионов  $Eu^{3+}$  в продукте высокотемпературного обжига ГАК, полученного осаждением из водного раствора ( $\lambda_{\text{люм.}} = 573$  нм).

реходу  ${}^5D_0 \to {}^7F_0$  в ионах  $\mathrm{Eu}^{3^+}$  в позициях  $\mathrm{Ca}(2)$ , существенно меньше по сравнению с интенсивностями полос в интервале 605-635 нм, соответствующих переходу  ${}^5D_0 \to {}^7F_2$ . В целом, в спектре люминесценции образца, полученном золь—гель-методом, преобладают полосы, соответствующие переходу  ${}^5D_0 \to {}^7F_2$ , что свидетельствует о преимущественном вхождении ионов  $\mathrm{Eu}^{3^+}$  в позиции  $\mathrm{Ca}(1)$ .

Спектры возбуждения люминесценции ионов европия, занимающих в ГАК две различные кристаллографические позиции, отличаются. На рисунке 5 представлен спектр возбуждения люминесценции ионов Eu<sup>3+</sup> в продукте высокотемпературного обжига ГАК для  $\lambda_{\text{люм.}} = 612$  нм, т.е. ионов  $\text{Eu}^{3^+}$ , занимающих позиции Ca(1). Помимо полос в области 355-370 нм (переход  ${}^7F_0 \to {}^5D_4$ ), 370-385 нм ( ${}^7F_0 \to {}^5G_{2-4}$ ), 385-408 нм ( ${}^7F_0 \to {}^5L_6$ ), 408-420 нм ( ${}^7F_0 \to {}^5D_3$ ), 455-475 нм ( ${}^7F_0 \to {}^5D_2$ ), 520-540 нм ( ${}^7F_{0,1} \to {}^5D_1$ ), 570-580 нм ( ${}^7F_0 \to {}^5D_0$ ) в спектре присутствует полоса с максимумом при 253 нм, которая обусловлена переносом заряда с 2p-орбиталей  $O^{2-}$  на свободные 4fорбитали ионов Eu<sup>3+</sup>. Положение полосы переноса заряда (ППЗ) ионов Eu<sup>3+</sup> в позиции Ca(1) является близким к характерным для оксидных соединений щелочноземельных металлов. Как видно из рис. 6, спектр возбуждения люминесценции ионов  $\mathrm{Eu}^{3^+}$  для  $\lambda_{\mathrm{люм.}} = 573$  нм (т.е. ионов Eu<sup>3+</sup> в положении Ca(2)) также содержит полосу переноса заряда, однако ее максимум  $\lambda_{\text{\tiny Makc.}} = 345$  нм существенно смещен в область больших длин волн. Очевидно, что наблюдаемое в эксперименте смещение ППЗ обусловлено большей степенью ковалентности связи Eu<sup>3+</sup>-лиганд в позиции Ca(2) по сравнению с позицией Ca(1). Отметим также, что спектры возбуждения люминесценции ионов Eu<sup>3+</sup> в ГАК, полученного золь-гель-методом, для  $\lambda_{\text{люм.}} = 612$  нм и  $\lambda_{\text{люм.}} = 573$ нм оказались аналогичными спектрам возбуждения люминесценции

ионов  $\mathrm{Eu}^{3+}$  в продукте высокотемпературного обжига ГАК.

Таким образом, из сравнения люминесцентных свойств ионов Eu<sup>3+</sup> в образцах ГАК, полученных различными способами, можно сделать следующие выводы:

- 1) характер распределения ионов Eu<sup>3+</sup> по позициям Са в структуре ГАК определяется концентрацией активатора; 2) распределение ионов  $Eu^{3+}$  по позициям Са существенно зави-
- сит от условий синтеза.

## ЦИТИРОВАННАЯ ЛИТЕРАТУРА

- 1. V. V. Sokolova, I. Radtke, R. Heumann, and M. Epple, Biomaterials, 27: 3147
- 2. S. P. Mondejar, A. Kovtun, and M. Epple, J. Mater. Chem., 17: 4153 (2007).
- A. Serret, M. V. Cabanas, and M. Vallet-Regi, Chem. Mater., 12: 3836 (2000). 3.
- 4.  $Powder\,Diffraction\,File\,(Inorganic\,Phases)\,({\bf Swarthmore: Joint\,Committee}\,on$ Powder Diffraction Standards—JCPDS), file No. 9-432.
- R. El. Ouenzerfi, N. Kbir-Ariguib, M. Trabelsi-Ayedi, and B. Piriou, J. Lumi-5. nescence, 85: 71 (1999).
- 6. R. Ternane, G. Panczer, M. Th. Cohen-Adad, C. Goutaudier, G. Boulon, N. Kbir-Ariguib, and M. Trabelsi-Ayedi, Opt. Mater., 16: 291 (2001).
- 7. X. Y. Chen and G. K. Liu, J. Sol. State Chem., 178: 419 (2005).
- 8. M. Karbowiak and S. Hubert, J. Alloys Comp., 302: 87 (2000).