© 2009 ІМФ (Інститут металофізики ім. Г. В. Курдюмова НАН України) Надруковано в Україні. Фотокопіювання дозволено тільки відповідно до ліцензії

PACS numbers: 61.46.Hk, 61.72.Cc, 68.43.Nr, 68.65.Ac, 81.07.Bc, 81.07.Wx, 82.80.Ms

Процессы деинтеркаляции водорода в интеркаляционных наносистемах на основе слоистых дисульфидов вольфрама и молибдена

Л. М. Куликов, Н. Б. Кёниг, Н. В. Шевчук, С. П. Гордиенко, Л. Г. Аксельруд^{*}, В. Н. Давыдов^{*}

Институт проблем материаловедения НАН Украины, ул. Кржижановского, 3, 03680, ГСП, Киев-142, Украина, *Львовский национальный университет им. Ивана Франко, ул. Кирилла и Мефодия, 6, 79005 Львов, Украина

Масс-спектрометрическим методом исследованы процессы деинтеркаляции водорода в интеркаляционных нанофазах на основе слоистых наноструктур 2H-WS₂ и 2H-MoS₂. Установлено, что при деинтеркаляции интеркаляционных нанофаз H_xWS₂ (0 < $x \le 1,55$), H_xMoS₂ (0 < $x \le 0,45$) водород выделяется в молекулярном виде (H₂) в интервалах температур 500–1420 К, 700–1420 К, соответственно. Показано, что разупорядоченность слоистых интеркалированных наноструктур H_xWS₂ и H_xMoS₂ существенно влияет на характеристики процесса деинтеркаляции водорода. Процессы интеркаляции–деинтеркаляции водородом в интеркаляционных нанофазах на основе слоистых наноструктур 2H-WS₂ и 2H-MoS₂ являются термодинамически обратимыми.

Мас-спектрометричною методою досліджено процеси деінтеркаляції водню в інтеркаляційних нанофазах на основі шаруватих наноструктур 2H-WS₂ і 2H-MoS₂. Встановлено, що при деінтеркаляції інтеркаляційних нанофаз H_xWS_2 ($0 < x \le 1,55$), H_xMoS_2 ($0 < x \le 0,45$) водень виділяється в молекулярному вигляді (H_2) в інтервалах температур 500–1420 К, 700–1420 К, відповідно. Показано, що розупорядкування шаруватих інтеркальованих наноструктур H_xWS_2 і H_xMoS_2 суттєво впливає на характеристики процесу деінтеркаляції водню. Процеси інтеркаляції–деінтеркаляції воднем в інтеркаляційних нанофазах на основі шаруватих наноструктур 2H-WS₂ і 2H-MoS₂ є термодинамічно оборотні.

The processes of hydrogen deintercalation in intercalated nanophases based on layered 2H-WS₂ and 2H-MoS₂ nanostructures are investigated by massspectrometry method. As revealed, at deintercalation of intercalated H_xWS_2

279

 $(0 < x \le 1.55)$, H_xMoS_2 ($0 < x \le 0.45$) nanophases, hydrogen is released in a molecular state (H_2) in temperature intervals of 500–1420 K, 700–1420 K, respectively. As shown, the disordering of layered intercalated H_xWS_2 and H_xMoS_2 nanostructures essentially influences on characteristics of hydrogen deintercalation processs. Hydrogen intercalation–deintercalation processes in intercalated nanophases based on layered 2H-WS₂ and 2H-MoS₂ nanostructures are thermodynamically convertible.

Ключевые слова: слоистые наноструктуры, дисульфиды вольфрама и молибдена, процессы деинтеркаляции, масс-спектрометрия.

(Получено 23 ноября 2007 г.)

1. ВВЕДЕНИЕ

Процессы интеркаляции-деинтеркаляции водородом слоистых наноструктур дихалькогенидов *d*-переходных металлов (внедрение в значительных количествах атомов или молекул в межслоевое пространство наноструктур, где действуют слабые ван-дер-ваальсовые силы) могут быть эффективно использованы для создании новых многофункциональных наноматериалов [1-3], в частности, водородных сенсоров, водородсодержащих материалов, в том числе с повышенным содержанием водорода, суперионных проводников с высокой протонной и электронной проводимостями, твердых, радиационно-стойких смазок для эксплуатации в атмосфере водорода, высокоанизотропных, в том числе и полупроводниковых, наноструктурных материалов с модифицированными свойствами. Вместе с тем, процессы интеркаляции-деинтеркаляции водорода могут быть использованы в нанотехнологиях дихалькогенидов *d*-переходных металлов, а также для модифицирования их структурно-чувствительных, полупроводниковых свойств в широких пределах.

Авторами ранее были изучены процессы интеркаляции атомарного и молекулярного водорода, а также структурные свойства водородных интеркаляционных фаз на основе микронных порошков слоистых диселенидов ниобия, молибдена и вольфрама [4–7] и нанофаз — слоистых наноструктур дихалькогенидов молибдена и вольфрама [8]. Сведения о процессах деинтеркаляции водорода в интеркаляционных нанофазах на основе слоистых дихалькогенидов интеркаляционных нанофазах на основе слоистых дихалькогенидов к настоящему времени отсутствуют.

Цель работы — исследование процесса деинтеркаляции водорода в интеркаляционных нанофазах на основе слоистых наноструктур 2H-WS₂ и 2H-MoS₂.

2. ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Водородные интеркаляционные нанофазы H_xWS_2 (0 < $x \le 1,55$) и

280

 H_xMoS_2 (0 < x ≤ 0,45) получены объемно-манометрическим методом (0,1–5,0 МПа, 470–670 К) в результате интеркаляции молекулярного водорода в слоистые наноструктуры 2H-WS₂ и 2H-MoS₂, синтезированные химическим осаждением из газовой фазы (CVD) [9, 10].

Рентгеновские исследования водородных интеркаляционных слоистых наноструктур H_xWS_2 и H_xMoS_2 выполнены на автоматическом порошковом дифрактометре HZG-4A (Cu K_{α} -излучение) с помощью пакета собственных программ компьютерных структурных расчетов WinCSD [11]. Средние размеры анизотропных наночастиц определены методом анализа уширения рентгеновских линий (формула Шеррера), при анализе функций физического уширения учитывалось возможное влияние искажений кристаллической структуры (формула Стокса).

Процессы деинтеркаляции водородных интеркаляционных наноструктур H_xWS_2 (0 < $x \le 1,55$), H_xMoS_2 (0 < $x \le 0,45$) исследованы массспектрометрическим методом на масс-спектрометре типа MX-1302, оборудованном дополнительным реактором для термического разложения водородосодержащих соединений и системой напуска (300– 1450 К, ~1.10⁻⁵ Па). Предварительно осуществляли нагрев реактора (370–420 К, вакуум ~1.10⁻⁵ Па) для удаления следов адсорбированных паров воды и газов, затем увеличивали температуру (до 1420 К, точность — ± 5 К, вакуум — ~1.10⁻⁵ Па), при этом фиксировали зависимость интенсивности ионного тока H⁺ (с учетом фоновых значений) от температуры. Аналогично выполняли качественный анализ на возможное появление в паровой фазе сероводорода.

3. РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

По результатам рентгеновских исследований установлено, что продукты взаимодействия молекулярного водорода со слоистыми наноструктурами 2H- MoS_2 , 2H- WS_2 в вышеуказанных условиях являются нанокристаллическими водородными интеркаляционными фазами и не содержат примесей посторонних фаз (низших сульфидов молибдена), а также иных наноструктурных форм (см. табл., [8]).

По данным масс-спектрометрических исследований установлено, что при деинтеркаляции интеркаляционных нанофаз H_xWS_2 (500– 1420 К) и H_xMoS_2 (700–1420 К) водород выделяется в молекулярном виде, — H_2 , — что указывает на термодинамическую обратимость процесса интеркаляции водорода в указанных наносистемах. При деинтеркаляции H_xWS_2 , H_xMoS_2 (500–1100 К) выделения серы и сероводорода не зафиксированы (выделение H_2S зафиксировано при температурах свыше 1100 К в отдельно оговоренных экспериментах), что указывает на сохранение исходных составов и структурного типа 2H-MoS₂ наноструктур.

		Парамет	pы		Кристаллографичес	кие направления	
z	Интеркаля	элементар - ячейки, 1	НМ	[01	3]	[11]	[0]
π/π	ционная нанофаза			Полуширина	Средний размер	Полуширина	Средний размер
	nondorm	а	c	рентгеновских	наночастиц	рентгеновских	наночастиц
				рефлексов Нw, рад	$d_{[013]}, { m HM}$	рефлексов Hw , рад	$d_{[110]}, { m HM}$
Ч	$\mathrm{H}_{0,446}\mathrm{MoS}_2$	0,3151(1) 1,	241(1)	0,04493	3,7(2)	0,01865	9,5(6)
0	$\mathrm{H}_{0,779}\mathrm{WS}_2$	0,31559(2) 1,2	2462(2)	0,02892	5,7(3)	0,00612	30(2)
က	$\mathrm{H_{0,239}MoS_2}$	0,3157(2) 1,	245(3)	0,04395	3,7(2)	0,01788	9,9(6)
4	$\mathrm{H}_{0,236}\mathrm{MoS}_2$	0,3147(2) 1,	247(3)	0,04470	3,7(3)	0,01781	9,9(6)
vo	$\mathrm{H}_{0,291}\mathrm{MoS}_2$	0,3154(2) 1,	240(2)	0,04466	3,7(3)	0,01640	10, 8(7)
9	$\mathrm{H_{0,456}WS_2}$	0,31505(1) 1,2	2383(2)	0,01507	10,9(7)	0,00756	23(1)
Πpu $2H^{-1}$ c = 1 c = 1 $d_{[013]}$ o6pa y_{JJb1} y_{JJb1} a = 0 c = 1	<i>мечания</i> : ис WS ₂ с a = 0, 5 , 258(1) нм, . = 4,3(3) нм, . ботки в 5М гразвуковой), 31565(4) ни, . , 2365(2) нм, .	ходные $I - 2H$ 1565(4) нм. $c = d_{10131} = 2.9(2)$ нм. $d_{1101} = 10.4(7)$ КОН; 0,1 МПа, обработки в в. и. $c = 1,2480(5)$ и $d_{10131} = 10.6(4)$ н	MoS ₂ c c 1,2480(5 $d_{[110]} = 1^{1}$ HM); 4 670 K; 5 ode (a = HM, $d_{[013]}$ M, $d_{[013]} =$ M, $d_{[110]} =$	a = 0, 3136(1) Hm, c = 1, $b, Hm, d_{[013]} = 3, 8(3) \text{ Hm}, $ $0, 4(6) \text{ Hm} \text{ Incc.re} oб pa 6 or - 2\text{H} - \text{MoS}_2 c a = 0, 3136 - 2\text{H} - \text{MoS}_2 c a = 0, 3136 - 2\text{H} - \text{MoS}_2 c a = 0, 3136 - 3, 8(3) Hm, c = 1, 25= 3, 8(3) \text{ Hm}, d_{[110]} = 17(1) $	258(1) HM, $d_{[013]} = 2,7(3)$ $d_{[110]} = 17(1)$ HM; 5 MI TRUB 5 M KOH; 0,1 MI TRUB 5 M KOH; 0,1 MI (1) HM, $c = 1,258(1)$ H 36(1) HM, $c = 1,258(1)$ H 36(1) HM, $c = 1,258(1)$ 1(2) HM, $d_{[013]} = 2,7(2)$ 1) HM HOCJE VJETPA3BY	2) HM, $d_{[110]} = 9, 4(6)$ HM IA, 610 K; 3 $- 2$ H-Mo Ia, 670 K ($a = 0, 3157(5$ M, $d_{[013]} = 2, 7(2)$ HM, $d_{[110]}$ HM, $d_{[110]} = 2, 7(2)$ HM, $d_{[110]} = 10, 3(4)$) HM, $d_{[110]} = 10, 3(4)$ KOBOЙ OбработКИ В BOJ	1; 5 MIIa, 670 K; 2 – $S_2 c a = 0,3135(1) \text{ HM},$) HM, $c = 1,240(3) \text{ HM},$ () HM, $c = 1,240(3) \text{ HM},$ () HM IDOJE () HM I

ТАБЛИЦА. Результаты рентгеновских исследований водородных интеркаляционных нанофаз H_xMoS₂ и H_xWS₂.

Рис. 1. Зависимости интенсивности деинтеркаляции водорода δI от температуры (300–1100 К) для интеркаляционных нанофаз H_xWS_2 : 1 x = 1,18 (интеркаляция водородом: 530 К, 5 МПа); 2 — x = 0,78 (610 К, 5 МПа); 3 — x = 0,67 (570 К, 5 МПа); 4 — x = 0,40 (530 К, 4,5 МПа).

Процесс деинтеркаляции водорода (500–1100 К) из наноструктур H_xWS_2 начинается при 520–580 К (навеска — 10 мг), его можно условно разделить на две стадии: в интервале 580–780 К наблюдается весьма интенсивное выделение H_2 , при 920–1100 К интенсивность процесса деинтеркаляции резко возрастает, при этом равновесное состояние в исследованных условиях не достигается (рис. 1).

Для больших температурных интервалов деинтеркаляции (300– 1220 К и 470–1420 К) из H_xWS_2 интенсивное выделение H_2 (вторая стадия) наблюдается при более высоких температурах (980-1220 К и 1070–1420 К, соответственно; рис. 2, 3), что, по-видимому, связано с различиями в кинетических характеристиках процесса деинтеркаляции, задаваемых скоростью нагрева. Можно полагать, что первоначальное интенсивное выделение водорода (580-780 К) из H_xWS₂ связано с его десорбцией с поверхности интеркаляционных нанофаз или деинтеркаляцией из позиций его частичной локализации в интеркалированных слоистых наноструктурах. Следует отметить, что на последнее обстоятельство косвенно указывают корреляции интенсивности выделения водорода с его исходным содержанием в интеркаляционных нанофазах. Последующая область интенсивного выделения H₂ (920-1100 К, 980-1220 К, 1070-1420 К), по-видимому, обусловлена деинтеркаляцией из других позиций, где содержится основное количество водорода в интеркалированных наноструктурах H_xWS_2 (рис. 1–3). Отсутствие тенденции к уменьшению выделения Н₂ в паровой фазе с увеличением температуры, возможно, обусловлено недостаточным уровнем деинтеркаляции (до полного выделения H₂ из интеркалированных наност-

Рис. 2. Зависимости интенсивности деинтеркаляции водорода δI от температуры (300–1220 К) для интеркалированных нанофаз H_xWS_2 : 1 - x = 0,31 (интеркаляция водородом: 530 К, 3 МПа); 2 - x = 0,28 (630 К, 0,1 МПа); 3 - x = 0,16 (550 К, 0,1 МПа).

Рис. 3. Зависимость интенсивности деинтеркаляции водорода δI от температуры (470–1420 К) для интеркалированной нанофазы $H_{0,78}WS_2$ (интеркаляция водородом: 610 К, 5 МПа).

руктур в исследованных условиях). Процессы деинтеркаляции водорода H_xWS_2 при фиксированной температуре достигают состояния равновесия (рис. 4).

Температуры деинтеркаляции наноструктур H_xMoS_2 смещены в область более высоких температур (700–1400 К) в сравнении с вышеизложенными данными для H_xWS_2 , что, возможно, связано с физико-химическими отличиями интеркаляционных наносистем. При деинтеркаляции H_xMoS_2 в интервале 700–1200 К водород практически отсутствует в паровой фазе, увеличение температуры (1200–

Рис. 4. Кинетическая зависимость деинтеркаляции водорода для интеркалированной наноструктуры $H_{0.35}WS_2$ (T = 1070 K).

Рис. 5. Зависимости интенсивности деинтеркаляции водорода δI для интеркаляционных нанофаз H_xMoS_2 от температуры: $1 - H_{0,45}MoS_2$ (интеркаляция водородом: 670 К, 5 МПа), $2 - H_{0,28}MoS_2$ (630 К, 0,1 МПа), $3 - H_{0,25}MoS_2$ (530 К, 0,1 МПа); предварительно обработанные ультразвуком: $4 - H_{0,31}MoS_2$ (в спирте, 670 К, 5 МПа), $5 - H_{0,23}MoS_2$ (в воде, 670 К, 5 МПа), $6 - H_{0,35}MoS_2$ (в ацетонитриле, 670 К, 5 МПа).

1400 К) приводит к значительному возрастанию интенсивности процесса деинтеркаляции, при дальнейшем росте температуры выделение водорода уменьшается, что, по-видимому, связано с окончанием процесса деинтеркаляции (рис. 5). При высоких температурах деинтеркаляции (около 1400 К) зафиксировано выделение сероводорода, при этом интенсивность его выделения пропорциональна содержанию водорода в интеркаляционных нанофазах H_xMoS₂.

Также были исследованы процессы деинтеркаляции водорода из интеркалированных наноструктур H_xWS_2 , H_xMoS_2 , которые были

получены из нанокристаллических 2H-WS_2 , 2H-MoS_2 , обработанных перед интеркаляцией ультразвуком в различных жидких средах (вода, спирт, ацетон, ацетонитрил).

Указанная предварительная обработка приводила к разупорядо-

Рис. 6. Зависимости интенсивности деинтеркаляции водорода δI от температуры для интеркалированных наноструктур H_xMoS_2 , предварительно обработанных ультразвуком в жидких средах: $1 - H_{0,43}MoS_2$ (в ацетоне, 670 К, 5 МПа); $2 - H_{0,19}MoS_2$ (в ацетоне, 670 К, 0,1 МПа); $3 - H_{0,29}MoS_2$ (в воде, 670 К, 0,1 МПа).

Рис. 7. Зависимости интенсивности деинтеркаляции водорода δI от температуры для интеркалированных наноструктур H_xWS_2 , предварительно обработанных ультразвуком в жидких средах: $1 - H_{0,6}WS_2$ (в ацетонитриле, 530 К, 5 МПа); $2 - H_{0,32}WS_2$ (в ацетоне, 610 К, 5 МПа); $3 - H_{0,26}WS_2$ (в ацетоне, 630 К, 0,1 МПа); $4 - H_{0,26}WS_2$ (в спирте, 610 К, 5 МПа); $5 - H_{0,23}WS_2$ (в спирте, 630 К, 0,1 МПа); $6 - H_{0,3}WS_2$ (в воде, 610 К, 5 МПа); $7 - H_{0,46}WS_2$ (в воде, 610 К, 0,1 МПа).

чению исходных слоистых наноструктур 2H-WS_2 , 2H-MoS_2 и, соответственно, синтезу разупорядоченных интеркаляционных нанофаз H_xWS_2 , H_xMoS_2 . При деинтеркаляции водорода из таких разупорядоченных интеркалированных наноструктур на интенсивность выделения водорода влияет не только его содержание в H_xWS_2 , H_xMoS_2 , но и возросшая разупорядоченность слоистых наноструктур после ультразвуковой обработки (рис. 6, 7).

Так, для H_xMoS_2 температуры выделения H_2 существенно уменьшаются: начало деинтеркаляции зафиксировано при 700 К, резкое увеличение интенсивности выделения H_2 наблюдается в интервале 950–1100 К (рис. 6). При этом следует отметить также заметное изменение характера зависимостей интенсивности выделения водорода из H_xWS_2 , H_xMoS_2 от температуры: для разупорядоченных H_xWS_2 отсутствует низкотемпературная область выделения водорода, его заметное выделение наблюдается при температурах выше 700 К, происходит смещения процесса деинтеркаляции в область более высоких температур (рис. 7). Следовательно, разупорядоченность слоистых интеркалированных наноструктур H_xWS_2 и H_xMoS_2 существенно влияет на характеристики процесса деинтеркаляции водорода.

4. ВЫВОДЫ

Установлено, что интеркаляция-деинтеркаляции водородом слоистых наноструктур 2H-WS₂ и 2H-MoS₂ является термодинамически обратимым процессом. Выделение водорода из интеркалированных наноструктур H_xWS_2 (0 < $x \le 1,55$) и H_xMoS_2 (0 < $x \le 0,45$) происходит в молекулярном виде (500–1420 К и 700–1420 К, соответственно). Разупорядоченность слоистых наноструктур H_xWS_2 и H_xMoS_2 существенно влияет на характеристики процесса деинтеркаляции водорода.

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

- 1. R. Scholhorn, Chem. Mater., 8, No. 8: 1747 (1996).
- 2. Л. М. Куликов, Наносистеми, наноматеріали, нанотехнології, 2, вип. 2: 401 (2004).
- 3. R. Tenne, Nature Nanotechnology, 1: 103 (2006).
- 4. L. M. Kulikov, A. A. Semenov-Kobzar, A. A. Chechovsky et al., J. Alloys&Comp., 224, No. 1: 11 (1996).
- 5. V. A. Makara, N. G. Babich, L. M. Kulikov et al., *Int. J. Hydrogen Energy*, 22, No. 2/3: 223 (1997).
- 6. Л. М. Куликов, М. М. Антонова, А. А. Семенов-Кобзарь и др., *Высокочистые вещества*, № 4: 89 (1996).
- А. А. Чеховский, Л. М. Куликов, А. А. Семенов-Кобзарь и др., Современные проблемы физического материаловедения (Киев: ИПМ НАН Украины: 1997).
- 8. Л. М. Куликов, Н. Б. Кёниг, Л. Г. Аксельруд, В. Н. Давыдов, Наносистеми,

наноматеріали, нанотехнології, 5, вип. 1: 149 (2007).

- 9. Л. М. Куліков, Н. Б. Кьоніг, Спосіб отримання нанокристалічних порошків дихалькогенідів вольфраму (Патент України 81587 МПК СО1В17/20, СО1В19/00/. № 200702446. Заявлено 06.03.2007. Опубл. 10.01.2008. Бюл. № 1).
- Л. М. Куліков, Н. Б. Кьоніг, Спосіб отримання нанокристалічних порошків дихалькогенідів молібдену (Патент України 81588 МПК С01В17/00, C01В19/00/. № 200702447. Заявлено 06.03.2007. Опубл. 10.01.2008. Бюл. № 1).
- 11. L. G. Akselrud, Yu. Grin, V. K. Pecharsky, P. Yu. Zavalij, B. E. Baumgartner, and E. Wolfel, *Proc. II Europ. Powder Diffraction Conf. (1992, Enschede, The Netherlands)* (1993), pt. 1, p. 335.
- 12. Л. М. Куликов, Н. Б. Кёниг, Л. Г. Аксельруд, В. Н. Давыдов, *Наносистеми*, наноматеріали, нанотехнології, **5**, вип. 1: 161 (2007).

288