© 2008 ІМФ (Інститут металофізики ім. Г. В. Курдюмова НАН України) Надруковано в Україні. Фотокопіювання дозволено тільки відповідно до ліцензії

PACS numbers: 61.05.fg, 61.41.+e, 63.22.Kn, 66.30.hk, 76.30.-v, 78.70.Nx, 82.35.-x

Динаміка низькомолекулярних зондів у наноструктурованих поліуретанових сітках, сформованих у присутности Co(acac)₃

В. В. Клепко, Ю. М. Нізельський, Н. В. Мніх, В. І. Слісенко^{*}, О. А. Василькевич^{*}

Інститут хімії високомолекулярних сполук НАН України, Харківське шосе, 48, 02160 Київ, Україна *Інститут ядерних досліджень НАН України, просп. Науки, 47, 03680, МСП, Київ, Україна

Методою квазипружнього розсіяння теплових невтронів та методою ЕПР з використанням парамагнетних зондів різної природи досліджено динаміку низькомолекулярних зондів у наноструктурованих поліуретанових сітках з іммобілізованими *in situ* координаційними сполуками кобальту. З аналізи електронно-спінових параметрів парамагнетних зондів, уведених у сформовані поліуретанові сітки, визначено характер комплексоутворення Co(acac)₃ в полімерній матриці. Показано, що комплексоутворення металовмісного модифікатора з макроланцюгами призводить до появи додаткових просторових перешкод для дифузії зондових молекуль у полімері в порівнянні з сіткою без металів. При цьому відмінності у динаміці зондових молекуль у Co-вмісних поліуретанах, синтезованих з різних розчинників (ДМФА або CH₂Cl₂), вказують на чутливість структурної морфології металовмісних поліуретанів до присутности додаткових аґентів комплексоутворення у реакційній суміші.

Dynamics of low-molecular probes in the nanostructured polyurethane networks containing coordination cobalt compounds immobilized *in situ* is analyzed using quasi-elastic thermal-neutrons scattering and EPR with paramagnetic probes of various nature. The peculiarities of the complex formation of Co(acac)₃ in polymer matrix are characterized due to analysis of electron-spin parameters of the complex paramagnetic probe introduced into polyurethane matrix. As shown, the complex formation of metal-containing modifier with macrochains results in appearance of additional spatial obstacles for probe-molecules diffusion as compared with metal free network. Difference of the probe dynamics in Co-containing polyurethanes obtained using different solvents (DMFA or CH_2Cl_2) points on structural morphology sensitivity to presence of additional complexing agent in reaction mixture.

Методом квазиупругого рассеяния тепловых нейтронов и методом ЭПР с использованием парамагнитных зондов различной природы исследована динамика низкомолекулярных зондов в наноструктурированных полиуретановых сетках с иммобилизированными *in situ* координационными соединениями кобальта. Из анализа электронно-спиновых параметров парамагнитных зондов, введенных в сформированные полиуретановые сетки, установлен характер комплексообразования Со(асас), в полимерной матрице. Показано, что результатом комплексообразования металлсодержащего модификатора с макроцепями является появление в содержащем металл полимере дополнительных пространственных затруднений для диффузии зондовых молекул по сравнению с сеткой без металлов. При этом отличия в динамике зондовых молекул в Со-содержащих полиуретанах, синтезированных из разных растворителей (ДМФА или CH₂Cl₂), указывают на чувствительность структурной морфологии металлсодержащих полиуретанов к присутствию в реакционной смеси дополнительных агентов комплексообразования.

Ключові слова: металовмісний поліуретан, наноструктурування, квазипружнє розсіяння теплових невтронів, метода ЕПР, зонд.

(Отримано 27 листопада 2007 р.)

1. ВСТУП

Присутність координаційноздатних сполук перехідних металів при формуванні поліуретанів (ПУ) може впливати як на перебіг реакції, що зумовлено їх каталітичною дією [1], так і на структуру полімерів [2–8] за рахунок концентрації полярних груп макроланцюгів ПУ у внутрішній та зовнішній координаційних сферах йонів перехідних металів [2, 9–14].

Процеси комплексоутворення між сполуками металів та матрицею сітчастих і лінійних ПУ досліджувалися різними методами: ІЧ [9, 10], ЯМР [11] та електронної [12, 13] спектроскопій, з використанням методи кальориметрії [14].

Методами рентґеноструктурної аналізи та ЕПР вивчали вплив комплексоутворення комплексних сполук перехідних металів різної валентности на морфологію сформованих у їх присутности сітчастих ПУ [2].

Методою ЕПР можна безпосередньо дослідити комплексоутворення сполуки металу з полімерною матрицею в ПУ, сформованих у присутности парамагнетних, наприклад, мідьвмісних, комплексних сполук. Інформацію про структурні зміни та комплексоутворення макроланцюгів ПУ, сформованих у присутности координаційних сполук непарамагнетних перехідних металів, серед яких, зокрема, і Со, ми можемо одержати, застосовуючи методу ЕПР з використанням як парамагнетних зондів (пмз) хелатної сполуки етилацетоацетат міді Cu(eacac)₂ та стабільного нітроксильного радикалу 2,2,6,6-

тетраметилпіперидин-1-оксил (ТЕМПО). У першім випадку інтерпретація даних методи ЕПР пов'язана із аналізою електронноспінових параметрів йона Cu(II), а в другім — із дослідженням обертальної рухливости пмз у полімерній матриці, що, як було показано в [8, 15, 16] виявилося ефективним при вивченні молекулярної динаміки і структури полімерів.

Ще однією методою оцінки динаміки зондових молекуль в полімерній матриці, є метода квазипружнього розсіяння невтронів (КПРН) [17]. Вибір цієї методи для дослідження процесів комплексоутворення між координаційними сполуками металів та полімерною матрицею продиктований його чутливістю до ефекту просторових обмежень в полімерних ґелях [17]. Такими просторовими обмеженнями в зшитих металовмісних ПУ можуть бути хімічна сітка та додаткова сітка координаційних зв'язків. Використання цієї методи для вивчення процесів комплексоутворення в металовмісних ПУ провадиться вперше і тому, без сумніву, представляє науковий інтерес, оскільки може в подальшому розширити коло метод дослідження наноструктурованих полімерних систем, модифікованих комплексними сполуками металів.

Дану роботу присвячено вивченню динаміки й електронноспінових параметрів зондових молекуль з метою виявлення змін у структурній морфології та характеру комплексоутворення між координаційною сполукою кобальту і ПУ-матрицею, сформованою у присутности 1% або 5% мас. ацетилацетонату тривалентного кобальту.

2. ЕКСПЕРИМЕНТАЛЬНА ЧАСТИНА

Об'єкти дослідження. Сітчасті поліуретани одержано реакційним формуванням *in situ* при взаємодії форполімеру на основі поліпропіленгліколя ММ-1000 і толуїлендіізоціаната (ТДІ 80/20) з триметилолпропаном (зшивач) у присутности 1% або 5% мас. Co(acac)₃ (ПУ–1% Со та ПУ–5% Со, відповідно), введеного у реакційну суміш у розчині диметилформаміду (ДМФА) або дихлорометану (CH₂Cl₂). Надалі розчинник, використаний при формуванні ПУ, буде вказуватися в дужках.

Детальний опис синтези наноструктурованих металовмісних поліуретанових сіток наведено у [2]. Стадії реакції ілюструє наступна схема 1.

I. HO-R-OH + 2OCH- R_1 -NCO \rightarrow NCO- R_1 -NHC(O)-O-R-OC(O)-NH- R_1 -NCO,

де
$$R = -\left[\left(CH_2 - CH - O_{-}\right)_n - CH_2 - CH_1, R_1 = -\right]$$
.
CH₃ CH₃ CH₃ CH₃

Схема 1. Реакційне формування поліуретанових сіток: І — синтеза форполімеру; ІІ — одержання сітки.

2.1. Методи дослідження

2.1.1. Метода квазипружнього розсіяння теплових невтронів (КПРН)

Експериментальні дослідження динаміки молекуль низькомолекулярного розчинника та процесів самодифузії в досліджуваному середовищі виконували за допомогою методи квазипружнього розсіяння теплових невтронів (КПРН) [17, 18], реалізованого на базі багатодетекторного спектрометру по часу прольоту 'NURMEN' на атомному реакторі ВВР-М Інституту ядерних досліджень НАН України. Детальний опис установки представлений у роботі [17]. В експерименті використовували монохроматичний пучок невтронів з енергією $E_o = 12,97$ меВ. Абсолютне енергетичне розрізнення складало 0,66 меВ. Спектри розсіяних невтронів реєструвались у діяпазоні кутів розсіяння $\theta = 9-117^{\circ}$ та аналізувалися за допомогою багатоканального аналізатора АИ 4096. Товщина зразків складала ~ 0,8 мм, що дозволяло нехтувати ефектами багатократного розсіяння, так як доля розсіяних невтронів не перевищувала 20%. Невтронні дослідження виконувалися за температури 291±1 К.

Виділення квазипружньої складової із загального спектру розсіяння невтронів як функції переданого імпульсу і енергії проводили за допомогою апроксимації Льоренца. Для інтерпретації залежности енергетичного розширення квазипружнього піка ΔE від квадрату переданого імпульсу q^2 ($q = (4\pi/\lambda)\sin(\theta/2)$, де λ — довжина хвилі невтронів, θ — кут розсіяння) використовували підхід, який базується на принципі ієрархії часових масштабів (швидких одночас-

тинкових рухів та більш повільних колективних) молекулярних рухів у рідині [17, 18], згідно з яким розширення квазипружнього піка може бути представлене як

$$\Delta E = 2\hbar D^L q^2 + \frac{2\hbar}{\tau_o} \left[1 - \frac{\exp(-2W)}{1 + D^F q^2 \tau_o} \right],\tag{1}$$

де $2\hbar D^L q^2$ — колективний («Ляґранжів») внесок в енергетичне роз-

ширення квазипружнього піка, а $\frac{2\hbar}{ au_o} igg[1 - rac{\exp(-2W)}{1 + D^F q^2 au_o} igg]$ — одночастин-

ковий («Френкелів») внесок в енергетичне розширення квазипружнього піка; D^F — одночастинковий коефіцієнт дифузії; D^L — колективний коефіцієнт дифузії; τ_o — час осілого життя молекулі; $\exp(-2W)$ — фактор Дебая-Валлера, який характеризує коливний рух молекуль відносно їх центру мас і зв'язаний із середньоквадратичним зміщенням $\langle x^2 \rangle$ від положення рівноваги.

2.1.2. Метода електронного парамагнетного резонансу (ЕПР) з використанням парамагнетних зондів різної природи

Спектри ЕПР реєстрували у 3-сантиметровому діяпазоні на радіоспектрометрі РЕ-1306 при 293 К. Резонансну частоту вимірювали за допомогою частотоміра ЧЗ-54 з перетворювачем частоти ЯЗЧ-87. Калібрувальними зразками були дифенілпікрилгідразил (ДФПГ, g = 2,0036) та матриця MnO, допована йонами Mn²⁺ (g = 2,0015).

Нітроксильний парамагнетний зонд (пмз) 4,4,6,6-тетраметилпіперидин-1-оксил (ТЕМПО) вводили в ПУ дифузією в плівки з насичених парів пмз при 308 К протягом 2 год. з наступною витримкою зразків протягом 24 год. при 293 К.

Час кореляції обертання ТЕМПО у досліджуваних матрицях т в области швидких рухів ($10^{-11} < \tau < 10^{-9}$ с) при використанні стандартних головних значень g- і **А**-тензорів розраховували згідно [15] за формулою:

$$\tau = 6,65\Delta H_{(+1)}(\sqrt{(I_{+1} / I_{-1})}) - 1) \times 10^{-10} \text{ c,}$$
(2)

де $\Delta H_{(+1)}$ — ширина центральної компоненти спектру ЕПР ТЕМПО в досліджуваній системі; I_{+1} , I_{-1} — інтенсивності компонент спектру у слабкому та сильному полі, відповідно.

Для визначення функційних груп полімеру, які не приймають участи у взаємодії з іммобілізованою сполукою металу, були використані підходи, розглянуті у роботі [8], де запропоновано використання етилацетоацетату міді⁽²⁺⁾ Cu(eacac)₂ як комплексного пмз. Його введення в ПУ здійснювали набуханням плівок в 0,02 моль/л розчині зонду в дихлорометані при 293 К протягом 20 хв. з наступною витримкою зразків при цій же температурі протягом 24–48 год.

Величини паралельних компонент *g*-фактора (g_{\parallel}) Cu(eacac)₂ і константи надтонкої структури (HTC) A_{\parallel} розраховували зі спектрів ЕПР за умов резонансу для зонду та калібрувальних зразків згідно [19].

Величину паралельної компоненти тензора А у вигляді, незалежному від частоти визначали із співвідношення:

$$A_i [cm^{-1}] = A_i [mT\pi] \frac{\beta g_i}{hc},$$

де A_i [мТл] визначали зі спектру як відстань між розщепленими компонентами в одиницях індукції магнетного поля (мТл).

3. РЕЗУЛЬТАТИ ТА ЇХ ОБГОВОРЕННЯ

У зшитих ПУ з іммобілізованими *in situ* молекулями Co(acac)₃ окрім хімічної сітки може формуватись додаткова сітка координаційних зв'язків в результаті комплексоутворення металоорганічної сполуки (LMet^{*n*+}L) з макромолекулями і утворення вузлів зшивання координаційної природи (схема 2) [2].

Схема 2. Будова додаткового координаційного вузла зшивання в системі ПУ-сітка-комплекс металу.

Результати КПРН та ЕПР з використанням нітроксильного пмз, враховуючи чутливість динаміки зондових молекуль до особливостей та рухливости просторових перешкод у системі, дозволяють дослідити вплив координаційних зшивачів на структурування полімеру, а метода ЕПР з комплексним пмз — виявити особливості комплексоутворення в системі.

Сітка хімічних зв'язків в об'ємі ПУ-0 буде накладати перешкоди на «вільну» (у порівнянні з розчинником) дифузію зондових молекуль дихлорометану, а утворені в Со-вмісному ПУ вузли координаційного зшивання будуть накладати додаткові просторові перешкоди для самодифузії таких молекуль. Це повинно впливати на величину загального коефіцієнту самодифузії, коефіцієнтів одночастинкової і колективної дифузії зондових молекуль розчинника в плівці ПУ– 5% Со для методи КПРН та на характеристики обертальної дифузії нітроксильного пмз.

3.1. Дифузія зондових молекуль за даними методи КПРН

Одержані енергетичні спектри розсіяння теплових невтронів представляють собою суму квазипружнього та непружнього розсіяння з розширеним завдяки наявности низькоенергетичних дифузійних рухів в системі квазипружнім піком. Для кожного кута розсіяння, виділяючи із загальних спектрів за допомогою Льоренцової апроксимації квазипружні піки, були визначені величини енергетичного розширення падаючої монохроматичної лінії ΔE як функції квадрату переданого імпульсу q^2 .

На рисунку 1 представлено типовий спектер повної інтенсивности розсіяння теплових невтронів модифікованими металовмісними ПУ-плівками, набухлими в дихлорометані, та внесок квазипружнього розсіяння.

Результатом взаємодії невтрона з дифузійними ступенями сво-

Рис. 1. Спектри повного (експериментальні точки) та квазипружнього (лінія) розсіяння теплових невтронів набухлими у дихлорометані ПУплівками, модифікованими 5% Со(асас)₃. Кут розсіяння 40,5°.

боди є енергетичне розширення падаючої монохроматичної лінії. При розсіянні невтронів змінюється їх імпульс $\Delta p = \hbar |\mathbf{q}|$.

Згідно міркувань, наведених у [17], для великих значень переданого імпульсу **q** час спостереження за молекульою в КПРН малий, і проявляються головним чином коливні рухи молекуль рідини. При зменшенні **q** час спостереження за молекульою збільшується, і невтрон «відчуває» як асимптотичну дифузійну поведінку, так і рухи молекуль подібні до рухів у кристалі. У відповідности до ієрархії часових масштабів (швидких одночасткових рухів та більш повільних колективних), розширення квазипружнього піка може бути представлене як $\Delta E = \Delta E^F + \Delta E^L$, де ΔE^F і ΔE^L — відповідно, одночастковий («Френкелів») та колективний («Ляґранжів») вклади в енергетичне розширення квазипружнього піка.

При використанні рівнання (1) для опису розширення квазипружнього піка, можна визначити загальний коефіцієнт дифузії $D = D^F + D^L$ з аналізи експериментальних залежностей $\Delta E(q^2)$ при малих значеннях ($q^2 \rightarrow 0$), а при великих значеннях ($q^2 \rightarrow \infty$) можна: визначити параметер D^L [17].

На рисунку 2 представлено залежності енергетичного розширення квазипружнього піка ΔE від квадрату переданого імпульсу q^2 набухлих у дихлорометані ПУ-плівок.

З виразу (1) можна одержати не тільки величину загального коефіцієнта самодифузії, а і його «Френкелів» D^F та «Ляґранжів» D^L вклади, які характеризують самодифузію окремих молекуль (перескоки) і дифузію молекуль у складі «Ляґранжевих частинок» (асоціятів, кластерів, комплексів тощо), відповідно.

У таблиці 1 представлені чисельні значення розрахованих дифузійних параметрів D, D^F і D^L та частки D^L у загальному коефіцієнті D для досліджених систем, одержані з використанням рівнання (1) та його асимптот при малих та великих Q.

Як видно з одержаних даних (табл. 1) для набухлого ґелю металовмісних ПУ спостерігається значне зменшення загального коефіцієнту самодифузії зондових молекуль рідини і його одночастинкової складової та одночасне зростання частки колективної складової у порівнянні з аналогічними параметрами для «чистої» рідини й набухлої плівки ПУ-0, причому, відношення D^L/D для металовмісних зразків зростає більше — майже втричі. Даний ефект свідчить про вплив просторових перешкод ПУ-сітки на динаміку молекуль зондової рідини, а також про різний рівень взаємодії в системі сітка-рідина для металовмісних ПУ та ПУ без металів. З іншого боку, перерозподіл дифузійних мод між одночастковими і колективними при модифікації ПУ-сіток може свідчити про зростання щільности структури для ПУ-систем, модифікованих комплексами металу.

З таблиці 1 також видно, що при практично однаковому співвідношенні дифузійних мод загальні коефіцієнти самодифузії моле-

Рис. 2. Експериментальні (символи) та теоретичні (лінії) залежності енергетичного розширення квазипружнього піка ΔE від квадрату переданого імпульсу q^2 для набухлих у дихлорометані плівок: ПУ-0 (CH₂Cl₂) (1), ПУ– 5% Со (ДМФА) (2) і ПУ–5% Со (CH₂Cl₂) (3).

ТАБЛИЦЯ 1. Дифузійні параметри зондових молекуль дихлорометану у набухлих плівках та розчинах, одержаних після набухання плівок.

Система	$D{\cdot}10^{-6}$, см $^2/c$	$D^{F} \cdot 10^{-6}$, см $^{2}/\mathrm{c}$	$D^L \cdot 10^{-6}$, см $^2/c$	$D^{\scriptscriptstyle L}/D,\%$
ПУ-0 (CH ₂ Cl ₂) (ґель)	2,71	2,4	0,31	11,5
Π У -5% Со (CH $_2$ Cl $_2$) (ґель)	1,25	0,89	0,36	28,8
ПУ-5% Со (ДМФА) (ґель)	1,85	1,32	0,53	28,6
ПУ-0 (CH ₂ Cl ₂) (вторинний розчин)	3,52	3,18	0,35	8
ПУ—5% Со (CH ₂ Cl ₂) (вторинний розчин)	2,78	2,51	0,27	10
ПУ-5% Со (ДМФА) (вторинний розчин)	3,33	3,04	0,29	8,7

куль дихлорометану для $\Pi Y-5\%$ Со (CH_2Cl_2) та $\Pi Y-5\%$ Со (ДМФА) відрізняються по абсолютній величині, що є свідченням різної структурної морфології таких полімерів і вказує на формування у присутности ДМФА більш «розпушеної» полімерної матриці. Цей висновок узгоджується з результатами дослідження діелектричної релаксації у ПУ-плівках, сформованих у присутности ДМФА [20], які вказують на більшу рухливість макроланцюгів в таких ПУ у порівнянні з ПУ-плівками, сформованими у присутности CH₂Cl₂.

Таким чином, вплив просторових ефектів суттєво залежить від типу структурної модифікації ПУ-матриці.

Дифузія зондових молекуль дихлорометану в розчиннику після набухання плівки без метального ПУ-0 практично не відрізняється

Рис. 3. Профілі інтенсивности ШКРРП (*a*): 1 — ПУ-0 (ДМФА), 2 — ПУ-5% Со (ДМФА), 3 — ПУ-5% Со (CH₂Cl₂) та оптичний мікрознімок ПУ-5% Со (CH₂Cl₂) при збільшенні у 100 разів (*б*).

від «вільної» дифузії молекуль у вихідному (чистому) розчиннику. Це може вказувати на відсутність здатних до вимивання молекулярних фраґментів у ПУ-0 та на повне завершення реакції зшивання.

Зміни параметрів дифузії молекуль розчинника, що залишився після набухання в ньому $\Pi Y-5\%$ Со (CH₂Cl₂), вказують на значне комплексоутворення в такій системі. Даний ефект ми пов'язуємо із присутністю у дихлорометані після набухання плівки слідів Со(асас)₃, що підтверджується також появою зеленого забарвлення, характерного для розчиненого металокомплексу.

Таке припущення узгоджується з даними метод ширококутового розсіяння Рентґенових променів (ШКРРП) і оптичної мікроскопії [2, 21], згідно з якими в об'ємі аморфного ПУ, модифікованого 5% мас. Co(acac)₃, утворюються кристалічні мікрообласті (рис. 3), збагачені цією низькомолекулярною сполукою, з якою немає фізичної взаємодії чи комплексоутворення за участю полярних груп матричного ПУ.

Частина металокомплексу, присутня в ПУ-плівці у вигляді кристалічної фази, може вимиватися з неї під час набухання в дихлорометані і координувати молекулі розчинника, сприяючи їх самодифузії за колективним механізмом.

Слід відмітити, що імовірність вимивання низькомолекулярного металокомплексу з плівки ПУ–5% Со (ДМФА) суттєво нижча ніж з плівки ПУ–5% Со (CH₂Cl₂). Це є наслідком додаткового зв'язуванні сполуки металу полярним розчинником ДМФА [21], який характеризується значно вищою, ніж CH₂Cl₂, здатністю до комплексоутворення [22] і може перешкоджати вимиванню кристалічної фази надлишкового низькомолекулярного хелату з плівки ПУ–5% Со (ДМФА) при набуханні її в дихлорометані. Дійсно, як видно із даних табл. 1, зміни параметрів дифузії зондових молекуль у залишковому розчині після набухання плівки ПУ–5% Со (ДМФА) є невеликими.

Збільшення вкладу в загальний коефіцієнт самодифузії дихло-

рометану колективної дифузії його молекуль для металовмісних $\Pi Y-5\%$ Со (див. табл. 1) вказує на значне зростання в $\Pi Y-5\%$ Со частки молекуль «зв'язаного» дихлорометану, самодифузія яких відбувається за колективним механізмом. У той же час абсолютні значення параметру D^L залишаються практично незмінними, що свідчить про те, що колективна мобільність молекуль «зв'язаного» дихлорометану не відчуває впливу просторових перешкод. Подібний ефект спостерігали також при дослідженні самодифузії молекуль води в желатинових та поліакриламідних ґелях [17].

3.2. Дослідження комплексоутворення Co(acac)₃ з полімерною матрицею за даними методи ЕПР

Використання нітроксильних радикалів як парамагнетні зонди при дослідженні полімерних систем базується на залежности спектрів ЕПР такого зонда від його обертальної та трансляційної рухливости в полімері. Вони, в свою чергу, визначаються структурою та рухливістю полімерної матриці, в яку зонд введено. Ступінь загальмованости обертальної рухливости пмз (у нашому випадку ТЕМПО) в модифікованих матрицях ПУ, що містять йони Co³⁺, введені в реакційну суміш у складі 1% та 5% ацетилацетонату кобальту, оцінювали за величиною часу кореляції пмз у магнетнім полі.

Час кореляції обертання зонда в різних ПУ, обчислений за формулою (2) наведено у табл. 2.

На рисунку 4 наведено спектри ЕПР нітроксильного пмз ТЕМПО в досліджених матрицях за кімнатної температури.

Спектри ТЕМПО в досліджених ПУ мають складну будову, асиметричну форму і є суперпозицією спектрів пмз з різною обертальною рухливістю. В деяких спектрах можна спостерігати розщеплення низькопольової компоненти спектру ТЕМПО, суттєве збільшення інтенсивности центральної компоненти і помітне розщеплення компоненти у високих полях. Розраховані величини часу кореляції є величинами одного порядку і відповідають «швидкій» фракції пмз, що знаходяться у поліуретановій сітці.

Існування в матриці Со-вмісних ПУ додаткових перешкод, зумовлених формуванням вузлів координаційного зшивання, позначається на зменшенні обертальної рухливости парамагнетного зонда ТЕМПО в матриці ПУ-Со у порівнянні з його рухливістю в безметалевім ПУ-0, на що, згідно з [15], вказує зростання часів кореляції обертальної дифузії ТЕМПО в матрицях ПУ-Со, у порівнянні з їх величинами для безметалевих (ПУ-0) аналогів (табл. 2).

Як видно з даних табл. 2, природа розчинника (CH_2Cl_2 чи ДМФА) присутнього в реакційній системі, де він виступає додатковим комплексоутворювачем, також впливає на обертальну дифузію нітроксильного пмз у сформованій ПУ-плівці.

Рис. 4. Типові спектри ЕПР нітроксильного (*a*-*z*) та комплексного (*∂*-*3*) парамагнетних зондів в різних середовищах: спектер ТЕМРО з віднесенням компонент (*a*); розраховані спектри ТЕМРО в области швидких і повільних рухів (*б*) [15];ТЕМРО у безметалевім ПУ-0 (*в*); ТЕМРО у металовмісному ПУ-5% Со (*z*); Сu(eacac)₂ діямагнетно ізольований у заскленій (77 К) матриці хлороформ-толуол, що не утворює комплексів з пмз [19] (*∂*), Cu(eacac)₂ у ПУ-0 (*e*), Cu(eacac)₂ у ПУ-1% Со (*ж*), Cu(eacac)₂ у ПУ-5% Со (*з*).

Як і при дослідженні трансляційної та коливальної дифузії зондових молекуль у методі КПНР, більша обертальна рухливість (менший час кореляції т) ТЕМПО в ПУ-0 (ДМФА), ПУ-1% Со (ДМФА) і ПУ-5% Со (ДМФА) у порівнянні з відповідними поліуре-

Система	Розчинник, використаний при формуванні ПУ	$\tau \cdot 10^{10}$, c
ПУ-0		39
ПУ-1%Со	ДМФА	49
Π У -5% Со		49
ПУ-0		50
ПУ-1%Со	OH_2OI_2	54

ТАБЛИЦЯ 2. Час кореляції обертальної дифузії нітроксильного пмз ТЕМПО в поліуретанах, сформованих у присутности різних розчинників.

ТАБЛИЦЯ 3. Електронно-спінові параметри ізольованого Cu(eacac)₂ та в матриці поліуретанів.

Система	g		$A_{\parallel}{\cdot}10^4$, cm $^{-1}$	
	I комплекс	II комплекс	I комплекс	II комплекс
Cu(eacac) ₂ при 77К	2,243	_	192	_
ПУ-0	2,306	_	164	_
ПУ-1%Со	2,287	2,269	159	170

танами, сформованими у присутности CH₂Cl₂, вказує на формування більш розпушеної ПУ-сітки у присутности ДМФА.

На зміну характеру комплексоутворення в ПУ-матриці у присутности Co(acac)₃, згідно з даними методи ЕПР з використанням комплексного пмз Cu(eacac)₂, вказує зміна електронно-спінових параметрів пмз чутливих до хімічної природи та симетрії найближчого оточення центрального йона металу.

У зшитих ПУ, які містять хелатні сполуки кобальту у внутрішній або зовнішній координаційній сферах йона металу, можуть приймати участь етерні та уретанові групи ПУ, а також можлива взаємодія π -системи фраґментів ТДІ з π -системою хелатних кілець комплексу металу. Згідно з літературними даними [23] комплексоутворення зонда з донорами електронів супроводжується зростанням величини g_{\parallel} (в межах значень від 2,290 до 2,400) та зменшенням константи НТС A_{\parallel} зі зростанням донорної здатности адденда.

В таблиці 3 наведено величини електронно-спінових параметрів йона міді комплексного пмз в різних матрицях.

Рисунок 4 ілюструє типові спектри ЕПР пмз в ПУ. Спектер етерату міді у монокристалі або у аморфній засклованій діямагнетній матриці характеризується вузькими лініями, наявністю надтонкої структури (HTC) і анізотропією g-фактора, які свідчать про тетрагональну (D_{2h} або D_{4h}) симетрію хелатного вузла. Поява HTC і анізотропії спектру Cu(eacac)₂ в твердій ПУ-матриці може слугувати тестом на аморфність цієї матриці. Особливістю спектру пмз у зшитих ПУ є поява НТС уже за кімнатної температури. Цей спектер зберігає характерний вигляд для тетрагональних комплексів міді. Вигляд спектру ЕПР ПУ–5% Со, що є суперпозицією анізотропного з НТС і широкого синглетного сиґналів комплексного пмз, вказує на значну частку мікрокристалічних областей в такій матриці. Це узгоджується з даними ШКРРП та оптичної мікроскопії [2, 21].

Із таблиці З видно, що розраховані значення *g*-факторів і констант НТС пмз в ПУ відрізняються від параметрів незбуреного пмз, що підтверджує його чутливість до комплексоутворення з полярними групами ПУ. Порівняння значень A_{\parallel} і g_{\parallel} в досліджених матрицях з їх значеннями в модельних матрицях, наприклад, хелат мідіметанол і хелат міді-піридин [23], дозволяє визначити функційні групи ПУ, з якими переважно взаємодіє пмз. За величиною констант стійкости комплексів пмз-електронодонорна група фікційні групи ПУ можуть бути розташовані в ряд: –О–, С=О, –N(H)–.

Спектер ЕПР хелатного пмз, уведеного у ПУ-0, є суперпозицією кількох сиґналів зондів, що знаходяться в різному хімічному оточенні. При цьому розраховані параметри сиґналу (І) є характерними для комплексів з групами, що мають високу електроно-донорну здатність (уретанова група в ПУ-0), а параметри g_{\parallel} и A_{\parallel} сиґналу (II) є характерними для комплексів з донорами електронів етерного типу. Такий характер спектру пмз свідчить про існування у ПУ-0 просторово розділених мікрообластей збагачених групами -N(H)C(O)-, а також областей, збагачених групами –С–О–С–. Деякі спектри ЕПР комплексного зонда, введеного до металовмісних ПУ, також мають складну будову і є суперпозицією сиґналів зонду з областей різного складу, однак у всіх випадках зміна параметрів g_{\parallel} та A_{\parallel} комплексного пмз, вказує на те, що для комплексоутворення з зондом у модифікованих системах залишаються вільними переважно функційні групи з відносно низькою електронодонорною здатністю (етерні групи –О--гліколевої складової ПУ). Отже, з іммобілізованим іп situ Co-вмісним модифікатором беруть участь в комплексоутворенні переважно уретанові групи ПУ.

Беручи до уваги одержані результати та висновки [1, 2] можна стверджувати, що у присутності Co(acac)₃ в ПУ-матриці дійсно формується додаткова сітка координаційних зв'язків з електронодонорними центрами, присутніми в системі (переважно з уретановими групами (схема 3, *a*). Крім того такими центрами можуть виступати неподілені електрони атомів кисню етерних фраґментів макроланцюгів ПУ, π -системи фраґментів ТДІ, (схема 3, *a*) і також деякі молекулі розчинника (схема 3, *б*, *в*).

4. ВИСНОВКИ

Таким чином, з аналізи спектрів ЕПР зондових молекуль Cu(eacac)₂ у

плівках ПУ-0 і ПУ–1% Со та електронно-спінових параметрів йона Cu(II) цього комплексного пмз видно, що іммобілізований *in situ* Co(acac)₃ формує в ПУ-матриці комплекси переважно з уретановими групами макроланцюгів. Згідно з даними методи КПРН та аналізи обертальної рухливости нітроксильного пмз для ПУ з іммобілізованим *in situ* Co(acac)₃ таке комплексоутворення супроводжується появою у металовмісних ПУ додаткових просторових перешкод для дифузії зондових молекуль у порівнянні з сіткою хімічних зв'язків в ПУ-0.

Беручи до уваги одержані результати, можна стверджувати, що у присутности Co(acac)₃ в ПУ-матриці дійсно формується додаткова сітка координаційних зв'язків з електроно-донорними центрами, присутніми в системі.

Схема 3. Шляхи можливої координації між ацетилацетонатом кобальту (LCo³⁺L) та електроно-донорними центрами макроланцюгів ПУ (a), молекулями дихлорометану (δ) або диметилформаміду (s).

Відмінність по абсолютній величині коефіцієнтів дифузії зондових молекуль дихлорометану (за даними КПРН) та зміна обертальної рухливости нітроксильного пмз (за даними ЕПР) у плівках ПУ– 5% Со та ПУ–1% Со, відповідно, синтезованих з різних розчинників (ДМФА або CH_2Cl_2), вказують на чутливість структурної морфології металовмісних поліуретанів до присутности додаткових аґентів комплексоутворення у реакційній суміші.

ЦИТОВАНА ЛІТЕРАТУРА

- Ю. Н. Низельский, Каталитические свойства β-дикетонатов металлов (Киев: Наукова думка: 1982).
- 2. Ю. М. Нізельський, Н. В. Козак, В. І. Штомпель та ін., *Наносистеми, нанома*теріали, нанотехнології, **3**, вип. 2: 445 (2005).
- Л. П. Робота, В. И. Штомпель, Ю. В. Савельєв, Полимерный журнал, 27, № 2:83 (2005).
- 4. Н. С. Клименко, В. В. Шевченко, С. В. Лаптий и др., *Композиционные по*лимерные материалы, вып. 47:9 (1990).
- Ю. С. Ліпатов, Ю. М. Нізельський, Л. Ф. Косянчук, Доповіді АН України, № 12: 87 (1991).
- 6. Ю. Н. Низельский, Л. Ф. Косянчук, Ю. С. Липатов и др., Высокомолекулярные соединения. Сер. А, 35, № 7: 793 (1993).
- 7. И. М. Давлетбаева, А. П. Рахматуллина, П. А. Кирпичников, А. И. Кузаев, Высокомолекулярные соединения, **40**, № 4: 667 (1998).
- 8. Н. В. Козак, Л. Ф. Косянчук, Ю. С. Липатов и др., *Теоретическая и экспериментальная химия*, **36**, № 2: 90 (2000).
- 9. А. П. Греков, С. В. Кузнецов, С. Г. Корвяков, Композиционные полимерные материалы, № 45: 14 (1990).
- В. В. Устяк, В. Н. Николаев, Н. А. Дольова, Журнал прикладной химии, 69, № 10: 1731 (1996).
- 11. W. Hiller, J. Gahde, R. Gehrke et al., J. Inf. Rec. Mater, No. 1: 71 (1990).
- 12. А. П. Греков, С. В. Кузнецов, В. А. Храновский, Т. С. Яцимирская, Доклады *АН УССР. Сер. Б*, № 12: 36 (1988).
- 13. Ю. М. Нізельський, Ю. В. Скакун, Н. В. Козак, В. І. Штомпель, *Полімерний журнал*, **28**, № 4: 308 (2006).
- З. Н. Медведь, Н. И. Петрова, Всес. конф. «Химия и технол. пр-ва перераб. и применения полиуретанов и сырье для них» (17–21 октября 1988, Суздаль, Россия), с. 182.
- А. М. Вассерман, А. Л. Коварский, Спиновые метки и зонды в физикохимии полимеров (Москва: Наука: 1986).
- 16. Г. П. Сафонов, Ю. А. Ольхов, С. Г. Энтелис, Высокомолекулярные соединения, XVII, № 2: 343 (1975).
- 17. Л. А. Булавін, Т. В. Кармазіна, В. В. Клепко, В. І. Слісенко, *Нейтронна* спектроскопія конденсованих середовищ (Київ: Академперіодика: 2005).
- 18. В. Т. Кротенко, А. К. Дорош, П. Г. Иваницкий и др., *Журн. структурной химии*, **33**, № 1: 72 (1992).
- Т. Э. Липатова, Ю. Н. Низельский, Успехи химии полиуретанов (Киев: Наукова думка: 1972).
- 20. Ю. М. Нізельський, Н. В. Козак, В. В. Клепко та ін., *Наносистеми, нано*матеріали, нанотехнології, **4**: вип. 2: 347 (2006).
- 21. N. Kozak, Yu. Nizelskii, N. Mnikh et al., *Macromolecular Symposia*, **243**: 243 (2006).
- 22. В. Гутман, Химия координационных соединений в неводных растворах (Москва: Мир: 1971).
- 23. А. А. Шкляев, В. Ф. Ануфриенко, В. Д. Огородников, *Журн. структурной химии*, **14**, № 6: 994 (1973).