

ЕЛЕКТРОННА СТРУКТУРА ТА ВЛАСТИВОСТІ МЕТАЛІВ І СПОЛУК НА ЇХ ОСНОВІ

Відділ надпровідності (№09)	члкор. НАН України, д.фм.н., с.н.с. Кордюк О. А.
Відділ спектроскопії твердого тіла (№20)	члкор. НАН України, д.фм.н., проф. Уваров В. М.
Відділ обчислювальної фізики (№24)	члкор. НАН України, д.фм.н., проф. Антонов В. М.
Відділ електронної структури та електронних властивостей (№30)	д.фм.н., проф.Нищенко М. М.

МЕХАНІЗМИ ЕЛЕКТРОННОГО ВПОРЯДКУВАННЯ ТА ШЛЯХИ ПІДВИЩЕННЯ КРИТИЧНИХ ПАРАМЕТРІВ У ВИСОКОТЕМПЕРАТУРНИХ НАДПРОВІДНИКАХ (відомча тема 2016–2020 рр.)

У надпровідниках на основі заліза виявлено аномальний розмірний перехід у кутовій залежності магнітоопору (рис. 1), що знайшло пояснення у неочікувано широкій області існування поверхневої надпровідності. Встановлено, що через ключову роль електрон-електронної взаємодії у механізмі ренормалізації квазичастинкового спектру її обмежено по енергії шириною зони провідності (рис. 2). Аномальний зсув квазичастинкових зон з температурою (рис. 3) також можна пояснити цією взаємодією, яка на міжатомному рівні приводить до блокування електронних перескоків між найближчими сусідами (О.А. Кордюк, О.А. Каленюк).

Рис. 3. Kushnirenko et al., PRB, 96: 100504 (2017)

Оптичні властивості композита ПТФЕ/(0,05–5 мас.% ВНТ) у діапазоні λ =320–1000 нм

30 (ліворуч) та 60 мкм (праворуч)

Встановлено можливість підвищення ККД традиційних напівпровідникових елементів, щоб ефективніше перетворювати сонячне випромінення, за рахунок композитних покриттів з вуглецевими нанотрубками, оскільки в ультрафіолетовому діапазоні прозорість композиту стрімко падає в результаті ефективного поглинання високоенергетичних (у 3–5 еВ) квантів світла нанотрубками (М.М. Нищенко, І.Є. Галстян, В.Ю. Кода, М.М. Якимчук)

При додаванні у прозорий діелектрик домішкових (< 0,5 мас.%) вуглецевих нанотрубок коефіцієнт поглинання падає, а прозорість у видимому діапазоні зростає за рахунок поглинання нанотрубками високоенергетичних (у 3–5 еВ) квантів світла із наступною їх конверсією в низькоенергетичні кванти.

відділ електронної структури та електронних властивостей (№30)

Найвагоміший науковий результат 2017 р. відділу №24

SIAM parameters, the contributions of different configurations to the ground state and calculated Sm valence in the bulk and at the surface of the $SmRh_2Si_2$ compound.

SIAM parameters (eV)	Bulk	Surface
ϵ_{f}	-6.0	-6.3
Δ	0.7	0.5
U_{ff}	7.0	7.0
$c^2(4f^4)$	0.0002	0.0001
$c^{2}(4f^{5})$	0.9363	0.9490
$c^2(4f^6)$	0.0635	0.0509
Sm valence	2.937	2.949

На основі квантово-механічних зонних розрахунків і моделі одиночної домішки за Андерсоном (single-impurity Anderson model—SIAM) показано, що нетипова змішана валентність як поверхневих, так і об'ємних атомів Sm у кристалічній сполуці SmRh₂Si₂ пояснюється, як і для ізоструктурних сполук на основі атомів Ce, наявністю сильної 4*f*гібридизації (В.М. Антонов, Ю.М. Кучеренко)

НАЙВАГОМІШИЙ НАУКОВИЙ РЕЗУЛЬТАТ 2017 Р. ВІДДІЛУ №24

відділ обчислювальної фізики (№24)

На основі квантово-механічних зонних розрахунків дано пояснення оптичних і магнетооптичних (МО) властивостей феромагнетних стопів з пам'яттю форми Ni-Mn–Sn. Встановлено, що ці властивості є дуже чутливими до відхилення від стехіометрії. Ідентифіковано міжзонні переходи, які визначають піки МО-спектрів, та показано, що вони відбуваються у відносно вузьких енергетичних інтервалах поблизу декількох напрямків високої симетрії Бріллюенової зони. Значна модифікація МО-спектрів відбувається при мартенситному переході у стопах Ni-Mn-Sn, і її можна вважати його характерною ознакою.

Вплив кристалічної структури на електронну будову та фізичні властивості сплавів Гойслера

густини станів електронів

Fe₂MnGa

Першопринципними розрахунками міжзонної оптичної провідности сплаву Fe₂MnGa із структурами типу $L2_1$ або $L1_2$ та їх співставленням з експериментальними спектрами для масивних і плівкових зразків Fe₄₉Mn₂₅Ga₂₆ та Fe₅₂Mn₁₈Ga₃₀ встановлено, що зміна типу магнітного порядку в масивних зразках (антиферомагнетик-ЭС χ (a.u.) феромагнетик або феромагнетикпарамагнетик відповідно) практично не ³ впливає на оптичні властивості сплавів. Цей ефект пояснюється різними часами формування електронної структури та магнітних флюктуацій у сплавах. Основні риси електронної структури сплавів формуються в межах близького атомового порядку (Ю.В. Кудрявцев, М.В. Уваров)

Сплави Fe₂MnGa демонструють структурну нестабільність. Незначне відхилення від стехіометрії 2:1:1 спричиняє формування ОЦК-, ГЦК- або тетрагональної структури. Зміна симетрії кристалічної ґратниці викликає

істотні зміни в електронній структурі та зміни спектрів ЯМР (**ліворуч**), магнітних і транспортних властивостей (**праворуч**).

Гратниці Сплави Fe₂MnGa демонструють феромагнітний ступінь сплавів Fe₂MnGa спінової поляризації електронів провідности і є перспективними функціональними матеріалами для практичного використання.

Вплив симетрії кристалічної ґратниці на температурні залежності магнітної сприйнятливости й електроопору 6

В НАНОМАСШТАБНІ ТА НАНОСТРУКТУРОВАНІ СИСТЕМИ

Відділ теорії металічного стану (№02)	д.фм.н., проф. Іванов М. О.
Відділ фізики багатопараметричної структурної діагностики (№03)	д.фм.н. Лізунов В. В.
Відділ надпровідникової електроніки (№12)	д.фм.н., проф. Руденко Е. М.

Явище взаємної конверсії синглетного і триплетного надпровідного упорядкування на інтерфейсі феромагнетик/синглетний надпровідник

Встановлено аномальний вплив на густину квазичастинкових станів сйнґлетного надпровідника віддалених шарів феромагнітних плівок (**зворотній ефект близькости**).

Використання виявленого явища відкриває перспективні шляхи створення кубітів,

— основних елементів квантового комп'ютера, — на базі гетероструктур надпровідник/феромагнетик.

відділ надпровідникової електроніки (№12)

ЕФЕКТ КОНКУРЕНТНОГО ВПЛИВУ РІЗНИХ УМОВ ДИФРАКЦІЇ НА ПІДСИЛЕННЯ ПРОЯВУ ДЕФЕКТІВ У КАРТИНІ БАГАТОКРАТНОГО РОЗСІЯННЯ ТА НА ЙОГО ВИБІРКОВІСТЬ ДО ТИПУ ДЕФЕКТІВ (ВІДОМЧА) В Геометрія Лауе

Вплив на залежність від ефективної товщини нормованої повної інтеґральної інтенсивности динамічної дифракції й на її структурну чутливість типу дефектів та інших умов дифракції: довжини хвилі і рефлексів

Встановлено й описано теоретично ефект конкурентного впливу різних умов дифракції на підсилення за рахунок відкритої фазової структурної чутливости прояву дефектів різного типу у картині багаторазового розсіяння Рентґенових променів і на вибірковість цього підсилення до типу дефектів. Одержана в результаті додаткова можливість керування вибірковістю підсилення уможливила істотно підвищити інформативність запропонованих раніше принципово нових, з на порядки підвищеними чутливістю й експресністю, неруйнівних методів динамічної дифрактометрії багатопараметричних систем.

(В.В. Лізунов, В.Б. Молодкін) відділ фізики параметричної структурної діагностики (№03) Густина станів (DOS) електронів для бездефектного шару графену за різних значень ($0 \le \varepsilon \le 32,5\%$) відносної деформації одновісним розтяганням

Густина станів (DOS) електронів для розтягнутих (ε = 27,5%) вздовж «зиґзаґового» напрямку графенових шарів з різними (0–3%) вмістами різного типу точкових дефектів

відділ теорії металічного стану (№02)

ГУСТИНА СТАНІВ ЕЛЕКТРОНІВ ДЛЯ РОЗТЯГНУТОГО ВЗДОВЖ «КРІСЕЛЬНОГО» АБО «ЗИҐЗАҐОВОГО» НАПРЯМКІВ ГРАФЕНОВОГО ШАРУ ($0 \le \varepsilon \le 30\%$) З 3,125% ВПОРЯДКОВАНОЇ ДОМІШКИ Armchair deformation Zigzag²deformation $\varepsilon = 0\%$ $\varepsilon = 0\%$ $\epsilon = 5\%$ $\epsilon = 5\%$ $\epsilon = 10\%$ $\epsilon = 10\%$ 0.5 S 0.5 Q 0.4 =15% $\varepsilon = 15\%$ =20%ε=20% ε=25% ε=25% 0.3 $\epsilon = 27.5^{\circ}$ $\epsilon = 27.5\%$ $\epsilon = 30\%$ $\epsilon = 30\%$ 0.20.1 0.10.0-0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 Reduced energy, $E/|\gamma_0^1|$ Reduced energy, $E/|\gamma_0^1|$ 1.2- analytical (pristine graphene) 1.0 -- numerical (pristine graphene) ΟH numerical (doped graphene) Band gap [eV] 0.8 dge 0.6 directior 0.4 mchair 0.2 Zigzag edge direction 0.0 5 10 15 20 25 30 відділ теорії металічного стану (№02) 12 Strain, ε [%]