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Performing an in-depth analysis of the photoemission spectra along the nodal direction of the high-
temperature superconductor Bi-2212 we developed a procedure to determine the underlying electronic struc-
ture and established a precise relation of the measured quantities to the real and imaginary parts of the
self-energy of electronic excitations. The self-consistency of the procedure with respect to the Kramers-Kronig
transformation allows us to draw conclusions on the applicability of the spectral function analysis and on the
existence of well-defined quasiparticles along the nodal direction even for the underdoped Bi-2212 in the
pseudogap state. The analysis of the real part of the self-energyS8svd for an overdoped and underdoped
Bi-2212 helps to distinguish the 70 meV “kink” fromS8svd maximum and conclude about doping dependence
of the kink strength.
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I. INTRODUCTION

With modern angle-resolved photoemission spectros-
copy1,2 sARPESd one gets a direct snapshot of the density of
low-energy electronic excited states in the momentum-
energy space of two-dimensionals2Dd solids.3–6 All the in-
teractions of the electrons which are responsible for the un-
usual normal and superconducting properties of cuprates are
encapsulated in such pictures, but are still hard to decipher.
One way to take into account these interactions is to consider
electronic excitations as quasiparticles which, compared to
the noninteracting electrons, are characterized by an addi-
tional complex self-energy.7 Extraction of the self-energy
from experiment is thus of great importance to check the
validity of the quasiparticle concept and understand the na-
ture of interactions involved, but appears to be problematic
since the underlying band structure of the bare electrons is
a priori unknown.

One can evaluate the interaction parameters taking the
bare band dispersion from band structure calculations,4 how-
ever, this unavoidably increases the uncertainty of any con-
clusions on the strength and nature of the interactions in-
volved. A direct determination of the bare band structure
from experiment would be much more attractive in this
sense. Previously, the bare band dispersion has been assigned
to the high binding energy part of the experimental
dispersion.8 In Refs. 9 and 10 we have discussed that the
bare Fermi velocity estimated from the nodal ARPES spectra
using the Kramers-KronigsKK d transformation is in reason-
able agreement with band structure calculations11,12and with
an analysis of the anisotropic plasmon dispersion,13 although
it has been pointed out that in order to quantify interaction
parameters such as coupling strength14 or self-energy15 a pre-
cise and reliable approach of bare band determination is
needed.

In this paper we introduce an approach to directly extract
both the bare band dispersion and the self-energy functions

from ARPES spectra. We show that the approach is self-
consistent within the highest experimental accuracy available
today. Applying the procedure to the spectra from the under-
doped and overdoped BisPbd-2212 as well as for optimally
doped BisLad-2201, we demonstrate the validity of the qua-
siparticle concept in cuprates even in the pseudogap state.

II. NODAL SPECTRA ANALYSIS

We start with a brief overview of the basics of the nodal
spectra analysis within the self-energy approach. Measuring
the photoemission intensity as a function of the kinetic en-
ergy and in-plane momentum of outgoing electronsIsEk,kd
one obtains access to the spectral function of the one electron
removal which is supposed to reflect the quasiparticle prop-
erties of the remaining photohole: its effective mass and life-
time. These properties can be expressed in terms of a quasi-
particle self-energyS=S8+ iS9, an analytical function the
real and imaginary parts of which are related by the KK
transformationssee Sec. 1 of the Appendixd. Neglecting for
the moment the effects of the energy and momentum resolu-
tions as well as the influence of matrix elements,6 one can
takeI ~Asv ,kd, wherev is the energy of the remaining pho-
tohole with respect to the Fermi level. In turn, the spectral
function can be formulated in terms of the self-energy

Asv,kd = −
1

p

S9svd
fv − «skd − S8svdg2 + S9svd2 , s1d

where«skd is the bare band dispersion. Within such a defi-
nition, S9svd,0, andS8svd.0 for v,0.

A. Linear dispersion

In case there is no interaction, i.e. electronic excitations
can live forever, the spectral function is a delta function with
the polev−«skvd=0 and, e.g., for the nodal direction, can be
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represented by the solid line in Fig. 1. When interactions are
present, the self-energy leads to a shifting and broadening of
the noninteracting spectral function. The resulting picture is
essentially that which is measured in ARPESsthe blurred
region in Fig. 1 illustrates thisd. If one neglects the momen-
tum dependence of the self-energy, then, from Eq.s1d, the
momentum distribution curvesfMDCskd=Askdv=constg have
maxima atkmsvd determined byv−«skmd−S8svd=0 for a
given v. In other words,S8svd=v−«skmd, is that which is
illustrated in Fig. 1 by the double-headed arrow. In the region
where the bare dispersion can be considered as linearswith a
slopevFd one can write

S8svd = v − vFfkmsvd − kFg. s2d

Assuming in addition weakk dependence ofS9 along a cut
perpendicular to the Fermi surfacessee discussion in Sec. 5
of the Appendixd, the MDCs exhibit a Lorentzian line shape5

with the half width at half maximumW and

S9svd = − vFWsvd. s3d

Thus, the determination of both the real and imaginary
parts of the self-energy requires the knowledge of the bare
dispersion«skd sor, in the vicinity toEF, an “energy scale,”
e.g., Fermi velocityvFd.9 The KK transformation gives an
additional equation which relates these functions:S8
=KKS9 fe.g., Eq.sA1dg. This opens the way to extract all
desired quantities from the experiment, but brings a new
“problem of tails.” Under “tails” we mean the behavior of
S9svd for energiesuvu.vm, where vm is a “confidence
limit,” a maximal experimental binding energy to which both
theWsvd andkmsvd functions can be confidently determined.

Fortunately, as we show in Sec. 3 of the Appendix, the
different but reasonable tails ofS9svd almost do not effect
the low-energy behavior ofS8svd. The influence of the high-
energy region on the coupling strengthsA3d can be described

by mainly one parameter, the high-energy cutoffvc. This
gives us the way to solve the whole problem, examining a
wider energy range of the ARPES data.

B. Quadratic dispersion

One more complication should be addressed here: in the
wider energy range a deviation of the bare dispersion from a
line should be taken into account. Along the nodal direction
the TB band in the occupied part can be well approximated
by a simple parabola«skd=v0s1−k2/kF

2d,9 for which we still
need one energy scale parameter: the bottom of the bare band
v0 or the bare Fermi velocityvF=−2v0/kF. Using this dis-
persion in Eq.s1d, one can finally modify Eqs.s2d ands3d to

S8svd =
vF

2kF
fkm

2 svd − kF
2g + v, s4d

S9svd = −
vF

kF
WsvdÎkm

2 svd − W2svd. s5d

C. Fitting procedure

In short, the fitting machinery is based on Eqs.s4d, s5d,
and sA1d. One can define three steps here. In the two first
steps, the real part of the self-energy, for givenv0, vc, andn
swhich characterizes the tails, see belowd, is calculated in
two wayssid Sdisp8 by Eq. s4d, sii d SKK8 by Eq. s5d with sub-
sequent KK transformsA1d. Then, in stepsiii d, the param-
etersv0, vc, andn fsee Eq.sA11dg are varied untilSdisp8 svd
and SKK8 svd coincide. In practice, we fit the difference
Sdisp8 −SKK8 to a small contribution of experimental resolu-
tion. The details of the procedure are given in Secs. 3 and 4
of the Appendix.

III. RESULTS

We have applied the described procedure to the experi-
mental data measured along the nodal direction for the fol-
lowing samples: underdoped BisPbd-2212 sTc=77 Kd, over-
dopedsTc=75 Kd BisPbd-2212, and optimally doped BisLad-
2201 sTc=32 Kd, marked in the following as UD77, OD75,
and OP32, respectively. The data for UD77 and OD75 were
collected at 130 K, and for OP32 at 40 K. We have explored
a number of excitation energies in the range of 17–55 eV
but, as we show below, only at 27 eV, at which only the
antibonding band is visible,12 the described procedure can be
directly applied to the bilayer Bi samples. The experimental
details can be found elsewhere.14,15

Figure 2 illustrates an example of the ARPES spectrum,
photocurrent as a function of energy and momentum, taken
for UD77 BisPbd-2212 at 130 K along the nodal direction.
On top of it, we plot the result of the fitting procedure, the
bare dispersion.

Another result of the procedure is the self-energy func-
tions. They are shown in Fig. 3 for UD77 and in Fig. 4 for
OD75 and OP32. We remind that the real part of the self-
energy is represented by two functionsSdisp8 and SKK8 , ob-
tained, as it is described above, from the experimental dis-

FIG. 1. sColor online.d Bare band dispersionssolid lined and
renormalized dispersionspointsd on top of the spectral weight of
interacting electrons. Though intended to be general, this sketch
represents the nodal direction of an underdoped Bi-2212.
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persion by Eq.s4d and from MDC widths with subsequent
KK transform, respectively. The irreducible differenceSdisp8
−SKK8 and the resolution functionR8svd, to which the differ-
ence is fitted, are also shown. Consequently, the interaction
parameters which we give below should be referred to the
Sdisp8 functions.

The imaginary part of the self-energy is presented by
Swidth9 svd function defined by Eq.s5d. In order to check the
correctness of the KK numerics, we also plot theSKK9 svd
function which is obtained by back KK-transformsA2d of
SKK8 svd.

The complete coincidence ofSdisp8 andSKK8 −R8 functions
in the whole accessible energy range substantiates that the
self-energy constructed using Eqs.s4d and s5d is self-
consistent within the experimental accuracy currently avail-
able with ARPES. This self-consistency shows, in addition to
the applicability of the self-energy approach to supercon-
ducting cuprates, that the measured spectra belong to a single
band and are free of influence of any unaccounted additional
features such as other bands, superstructures, ork-dependent
backgrounds. It has been shown recently12 that although the
electronic dispersion along the nodal direction in the bilayer
Bi-2212 is not degenerated, i.e., has a finite splitting about
0.05 eV for the bare dispersion, the photoemission from the
bonding band is highly suppressed at exactly 27 eV excita-
tion energy. At other energies we do not expect that the de-
scribed fitting procedure will work if applied directly. Figure
4sbd demonstrates this showing the “best” fitting result that
can be achieved forhn=38 eV. The difference between
DS8svd and R8svd is apparent. At these “inconvenient” en-
ergies the contributions of each band should be separated
first, that complicates the analysis but can be done in prin-
ciple by measuring several spectra at differenthn or polar-
ization se.g., see Ref. 16d.

In Table I we give the values of the experimental and
calculated parameters for three investigated samples, for
which the self-energy functions are shown in Figs. 3, 4sad,
and 4scd. The Fermi momentumkF and the renormalized

Fermi velocityvR are determined experimentally; the energy
of the bottom of the bare bandv0, the bare Fermi velocity
vF, and the coupling strengthl are the results of the fitting
procedure.

Other fitting parameters, which characterize the high-
energy tails ofS9svd, are not so well defined asv0 andl for
the reasons we discuss in Secs. 3 and 4 of the Appendix, but
we can state thatuvcu<uv0u /2. In case of the OD sample, the
parametersvc=0.40±0.05 eV,n=4±0.5 are better deter-
mined because of a higher confidence limitvm=0.45 eV at
which one can see thatS9svd starts to saturatesSec. IV Bd.

IV. DISCUSSION

The presented examples purpose to illustrate the applica-
bility of the self-energy approach to Bi-cuprates. We believe
that the described procedure gives a powerful technique to
purify the ARPES data from artificial features and to build a
strong experimental basis for understanding of the nature of
electronic interactions in cuprates, but still a big work on the
data analysis should be performed. Nevertheless, some con-
clusions can be made even on this stage.

A. Well-defined quasiparticles

The linear behavior ofS8svd over a wide energy range
uvu, uvku indicates, using the criterion limv→0 S9svd /v=0,

FIG. 3. sColor online.d Real and imaginary parts of the self-
energy extracted from the experiment with the described procedure.
A complete coincidence between the corresponding parts of the
self-energy calculated from the two different experimental func-
tions, the MDC dispersion and MDC width, demonstrates the full
self-consistency of the ARPES data treated within the self-energy
approach.

FIG. 2. sColor online.d The bare band dispersion along the nodal
direction of an underdoped BisPbd-2212 ssolid parabolad on top of
its spectral weight at 130 K measured by ARPES. MDCsor renor-
malizedd dispersion shown by solid whitesredd line.
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the existence of well-defined quasiparticles in the pseudogap
state: for the underdoped BisPbd-2212 at 130 K the coher-
ence factorZ=0.54±0.03. The offset ofS9svd not only
comes from finite resolution but also finite temperature and
scattering on impurities,17 which are mostly energy

independent15 and do not contribute to the slope ofS8svd
and, therefore, to the coherence factor.

In Ref. 10 we have noticed that the scattering rate at room
temperature looks more linear for underdoped samples than
for overdoped ones that is in favor of the marginal Fermi

FIG. 4. sColor online.d Real and imaginary parts of the self-energy extracted from the experiment with the described procedure.
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liquid model sMFLd.18 It is important to stress thatS8svd,
determined with better accuracy, exhibits a linear behavior
below and above the kink energyvk ssee Fig. 2d which is
now difficult to reconcile with the MFL model: as far as a
slope inS8svd, according to Eq.sA4d, is mainly determined
by the coefficient atsv−vxd2 term in the expansion ofS9svd
aroundvx, the straight sections onS8svd imply the regions
whereS9svd is precisely parabolicsexhibits constant curva-
ture over some finite-energy regionsd.

B. High-energy cutoff

It is interesting to note that even for the UD77 sample, for
which the saturation ofS9svd has not been observed, it is not
possible to reconcile the high-energy behavior ofS9svd with
the saturation extremesA9d for sA10d with n=2g. This means
that uS9svdu reaches the maximum and starts to decrease at
aboutvc, and, consequently,S8svd changes the sign at ap-
proximately the same frequencyssee Fig. 7d. For OD75 and
OP32 samples this conclusion is even more strict due to
smaller bandwidth. Fig. 5 shows the results for BisPbd-2212
OD75:sad S8svd andS9svd; sbd kmsvd and«skd on top of the
experimentally measured quasiparticle spectral weight.

The fact thatvc is not equal but roughly two times less
than uv0u is consistent with presence of an essential electron-
electron scattering channel, the doping independent Auger
like decay,15 which originates from the electron-electron
Coulomb interaction and which mainly determines the life-
time of quasiparticles at high frequencies.

C. Doping dependence of the renormalization

Another point arises as a consequence of the tight corre-
lation betweenS8 and S9. Recently we have shown15 that
two different channels can be distinguished in the scattering
rate: the doping independent Auger-like decay, mentioned
above, and the doping-dependent channel, which can be
naturally associated with spin excitations. While such a de-
composition of the scattering rate into two channels seems to
be becoming commonly accepted,19 there is still a contro-
versy about the origin of the doping-dependent one. The
present analysis shows that regardless of the nature of this
channel, its doping and temperature dependence should ap-
pear in the doping and temperature dependence ofS8 and,
consequently, of the renormalized dispersion, although it is
clear that the variations in the latter should be marginal.

It is really so, and, in Fig. 6, we plot together the real
parts of the self-energy for UD77 and OD75 samples at
130 K. Just from visual comparison of these data one can
conclude thatsid the renormalization for UD77 is consider-
ably higher than for OD75,sii d the energy of the maximum
of S8svd for the overdoped sample is lower than for the
underdoped sample, it is about two times closer to the
70 meV “kink” energy,siii d the kink feature is well defined
in the underdoped case and becomes weaker with overdop-
ing.

Following this tendency one can expect that with over-
doping the 70 meV kink vanishes while the renormalization

FIG. 5. sColor online.d The results of the fitting procedure for
BisPbd-2212 OD75: sad real sodd curved and imaginary seven
curvesd parts of the self-energy;sbd the experimentalssolid lined
and baresdashed lined dispersions on top of the experimentally
measured quasiparticle spectral weight.

TABLE I. Experimental and calculated parameters of the quasiparticle spectral function along the nodal
direction in the normal state for three investigated samples: the Fermi momentumkF and the renormalized
Fermi velocityvR are determined experimentally; the energy of the bottom of the bare bandv0, the bare
Fermi velocityvF, and the coupling strengthl are the results of the described fitting procedure.

Sample kF sÅ−1d vR seV Åd v0 seVd vF seV Åd l

BisPbd-2212 UD77 0.471 2.04±0.05 −0.90±0.04 3.82±0.17 0.87±0.12

BisPbd-2212 OD75 0.445 2.46±0.07 −0.86±0.03 3.87±0.14 0.57±0.10

BisLad-2201 OP32 0.47 2.04±0.10 −0.79±0.05 3.36±0.22 0.65±0.16
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maximum moves to lower frequencies faking a persistence
of the kink in the whole doping range. Therefore, it is clear
that in order to clarify the origin of the kink feature a quan-
titative measure of it is required.

D. Phenomenology of the kink

Keeping the visual definition of the kink as a sharp bend
of the renormalized dispersion, we formalize it as a peak in
the second derivative ofS8svd and fitted it to a simple em-
pirical function

Slow8 svd = − lv −
Dl

p
sv − vkd

3Sarctan
vk

d
+ arctan

v − vk

d
D , s6d

which gives a squared Lorentzian in a second derivative

Ksvd = −
d2Slow8 svd

dv2 =
2

p

d3Dl

fd2 + sv − vkd2g2 . s7d

Fitting S8svd of the underdoped sample inuvu,170 meV
energy range to this formula we have obtained an energy
of the kink vk<−63 meV, a kink width fhalf width at
quarter maximum ofKsvdg d<30 meV, and a strength
of the kink eKdv=Dl<0.65. For the overdoped sample
vk<−56 meV, Dl<0.45. We believe that a systematic
study of this or similar quantitaties as a function of doping
and temperature will help to find the origin of the main elec-
tronic interaction in superconducting cuprates.

V. CONCLUSIONS

We have demonstrated the full self-consistency of the data
obtained using angle resolved photoemission and treated
within the self-energy approach. The extracted bare band dis-
persion is in good agreement with the band structure calcu-
lations and allows one to quantify the self-energy of the elec-
tronic excitations in the real energy scale. The accurately
determined real and imaginary parts of the self-energy prove
the existence of well defined quasiparticles along the nodal

direction even in the pseudogap state of Bi-2212.
The demonstrated self-consistency of the procedure opens

a way to validate the photoemission spectra: the KK sieve
can be used to verify the spectra for the absence of the band
splitting or artificial features. The preliminary analysis of the
spectra certified in such a way shows that the overall renor-
malization as well as kink in the nodal direction of Bi-based
cuprates is highly doping dependent, decreasing with over-
doping. In the light of the present dilemma about the origin
of the main scattering boson in the cuprates, a systematic
quantitative analysis of the KK verified spectra measured at
different temperature and doping level is indispensable.
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APPENDIX

1. Kramers-Kronig transformation

The quasiparticle self-energyS=S8+ iS9 in Eq. s1d is an
analytical function the real and imaginary parts of which are
related by the Kramers-KronigsKK d transformation20

S8svd =
1

p
PVE

−`

` S9sxd
x − v

dx, sA1d

S9svd = −
1

p
PVE

−`

` S9sxd
x − v

dx, sA2d

where PV denotes the Cauchy principal value. It is instruc-
tive to express some interaction parameters via both self-
energy functions. The coupling strength

FIG. 6. sColor online.d The real parts of the
self-energy for UD77 and OD75 samples at
130 K: solid lines show the result of fitting these
real parts to Eq.s6d in a frequency range
0.17 eV,v,0 for UD77 and 0.12 eV,v,0
for OD75; looking down arrows markS8svd
maxima; the dashed line denotes the 70 meV
“kink” energy.
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l = − SdS8

dv
D

v=0
sA3d

can be expressed in terms ofS9 differentiating the KK rela-
tion sA1d:

dS8svd
dv

=
1

p
PVE

−`

` S9sxd − S9svd
sx − vd2 dx. sA4d

Here we use the fact that adding some constant toS9sxd in
Eq. sA1d does not change the result. Then, for an even
S9svd, Eq. sA4d leads to

l =
− 2

p
PVE

0

` S9svd − S9s0d
v2 dv. sA5d

2. Problem of tails

In order to illustrate the problem, we rewrite Eq.sA5d in
an operator forml=−DS9 and express the parameters of the
bare dispersion and renormalization via the experimental val-
ues ofvR=sdkm/dvdv=0

−1 and DW: e.g., vF
−1=vR

−1−DW, or l
=1/Z−1, where

Z = 1 −vRDW sA6d

is the coherence factors0,Z,1d. In case the MDC width
Wsvd decays to zero or saturates on the scale covered by
experiment, as it is expected for the scattering by phonons,21

the DW value can be easily defined, and all the mentioned
parameters can be derived from experimental value ofvR and
Wsvd function. In cuprates, however,Wsvd, along the nodal
direction, does not decrease or even saturate in the whole
experimentally accessible energy regionsup to vm=0.5 eVd.

EquationsA5d can give a certain feeling how the high-
energy tails of the scattering rateS9svd for uvu.vm influ-
encesl. For example, for a simple case

S9svd = −Hav2 + C for uvu , vc,

0 for uvu . vc,
J sA7d

wherevc.0 is an energy cutoff andC;−S9s0d.0 is an
offset, Eq.sA5d gives

l =
2

p
Savc −

C

vc
D <

2

p
avc sA8d

for C!vc. Using another ultimate model forS9 tails,

S9svd = −Hav2 + C for uvu , vc,

avc
2 + C for uvu . vc,

J sA9d

which approximates the saturation of scattering rate at high
frequencies, one obtainsl=4avc/p, twice of Eq. sA8d. In
the following sections we show how we solve this problem.

3. Calculation of SKK8

In order to perform a KK transform, high-energy tails
should be attached toS9svd derived from Eq.s5d. Equations
sA7d andsA9d represent two extremes which can be enclosed
in a simple analytical expression

Smod9 svd = −
av2 + C

1 +U v

vc
Un , sA10d

as the ultimate cases withn→` andn=2, respectively. For
given n and vc, we constructS9svd function in a wide fre-
quency rangesup to uv0u or higherd assuming the particle-
hole symmetry

S9svd = HSwidth9 suvud for uvu , vm,

Smod9 svd for uvu . vm,
J sA11d

where vm is a “confidence limit,” a maximal experimental
binding energy to which both theWsvd andkmsvd functions
can be confidently determined,Swidth9 svd is calculated from
Eqs.s5d for givenv0, andSmod9 svd is fitted toSwidth9 svd in the
confidence range in order to definea andC. Then,SKK8 svd is
obtained fromS9svd by KK transformsA1d.

FIG. 7. sColor online.d Real sthin blued and imaginarysthick redd parts of the self-energy related by Kramers-KronigsKK d transform:
S8=KKS9, for three models ofS9 tails.
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FIG. 8. sColor online.d Illustration of the fitting procedure: real parts of the self-energySdisp8 svd sfilled squaresd obtained bys4d and
SKK8 svd sopen circlesd by Eqs.s5d andsA1d; the differenceDS8svd=SKK8 svd−Sdisp8 svd ssmall crossesd is fitted toR8svd scorresponding solid
lined, the contribution of overall resolution determined by Eqs.sA12d andsA13d. In the first three panelsv0=−0.9 but differentn=3, 4, and
6 in Eq. sA10d are compensated by differentvc=0.34, 0.45, and 0.52 eV, respectively. The last two panels, the “best” fitting results for
slightly differentv0’s.

KORDYUK et al. PHYSICAL REVIEW B 71, 214513s2005d

214513-8



Figure 7 shows the pairs ofS9svd and S8svd functions
obtained in such a way for the samev0 but for three different
models: Eqs.sA7d, sA9d, andsA10d with n=4 sdashed, dot-
ted, and solid lines, respectivelyd. Since KKC=0, in order to
simplify numerical calculation, the offset ofS9svd curves is
set toS9sv0d=0. The experimental data are taken for UD77
sample.

4. Resolution function

In step siii d, as we mentioned above, the difference
DS8svd=SKK8 svd−Sdisp8 svd should be fitted not to zero but to
some small but detectable contribution of the overall resolu-
tion R8svd. This difference can be easily understood by rea-
soning that finite energy and angular resolutions mainly ef-
fect the MDC’s width rather than its peak position and that
its contribution is frequency dependent. In order to illustrate
this we can take into account the overall resolution,R, as
Swidth9 svd=ÎS9svd2+R2. Then one can consider its
frequency-dependent contribution to the imaginary part of
Ssvd as the difference betweenSwidth9 svd and realS9svd:

R9svd = ÎR2 + S9svd2 − S9svd, sA12d

and, due to additivity of the KK transform,SKK8 =KKSwidth9
=KKS9+KKR9=Sdisp8 +R8, constructv-dependent contribu-
tion to SKK8 as

R8svd = KK R9svd. sA13d

Although, in principle, the resolution effectR8svd can be
explicitely calculated from known energy and momentum
resolutions, here we derive it empirically usingR as a pa-
rameter. It is seen from Fig. 7 that different tails do not affect
the energy regionuvu,0.25 eV, so, an irreducible difference
in the slopesssee Fig. 8d D=dSKK8 svd /dv−dSdisp8 svd /dv
.0 in the low-energy rangeuvu,0.07 eV swhile D=0 at
higher energies 0.1 eV, uvu,0.2 eVd is a measure ofR8svd.

In Fig. 8 we plotR8svd setting the offset ofS9svd to zero
that gives the value ofR=0.015 eV. ForS9s0d,0 the pro-

cedure gives largerR values to accommodate the difference
in slopes but this does not affect the fact that the irreducible
difference betweenSKK8 svd and Sdisp8 svd is caused by the
experimental resolution, and depends on frequency as is
shown in Fig. 8: it vanishes at zero and high frequencies
having a maximum around 0.1 eV.

Thus, we can visualize the fitting procedure as fitting the
differenceDS8svd to R8svd function. The procedure has ap-
peared to be robust with respect to thev0 determination.
Figure 8 illustrates this. First three panels show that for a
correct value ofv0=−0.9 eV there is space for other param-
eters to vary: different tails can be compensated by different
vc’s, e.g., forn=3, 4, and 6 in Eq.sA10d, vc=0.34, 0.45, and
0.52 eV, respectively. On the other hand, at slightly different
v0’s sabout 10% lower and higher, see two right panelsd,
DS8svd cannot be fitted toR8svd in the whole frequency
range.

5. Model assumptions

Finally, we discuss two assumptions which have been
made about the model self-energy:k-independence and
particle-hole symmetry. It has been mentioned above that the
symmetric Lorentzian line shape of the MDC’s taken along
the nodal direction was considered as an experimental evi-
dence that the quasiparticle self-energy hardly depends on
momentum.5 Recently, however, it has been noticed that the
necessary condition for the Lorentzian line shape is
]S9sk,vd /]k=0, but ]S8 /]k can be an v-independent
constant.22 This is especially interesting because the authors
of Ref. 22 have shown that such a lineark-dependence ofS8
can explain a nontrivial doping-dependent high-energy dis-
persion observed for a variety of cuprates.23

As long as S8sk,vd=Sk8skd+Sv8 svd and ]S9 /]k=0, k
dependence ofS8 does not affect any result of the presented
analysis except the bare dispersion. In this case, the real
bare dispersion is just«realskd=«skd−Sk8skd or vF

real=vF

−s]S8 /]kdk=kF
. Although our preliminary results, being in

agreement with band structure calculations12 and experimen-

FIG. 9. sColor online.d Possible particle-hole
asymmetry effect onS9svd sred/thick linesd and
S8svd sblue/thin linesd: low-energysdashed lines,
vc=0.1 eVd and high-energyfsolid lines, by Eq.
sA14dg contributions shown on the top of the
symmetric self-energysshaded areasd.
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tal plasmon dispersion,13 do not support strongk dependence
of S8, it will be interesting to examine its possible contribu-
tion in a wide doping range and for different compounds.

A possible particle-hole asymmetry is another complica-
tion which can effect the results of the presented analysis. In
general, one can expect an asymmetry of the self-energy due
to an asymmetric electron-boson interaction or as a simple
consequence of asymmetric density of states. Without con-
sidering the origin of the asymmetry, we examine its possible
influence based on the energy scale where it can appear. It is
well known that because of the possibility to perform
ARPES at finite temperature one can get the information
about quasiparticle spectral weight not only below the
chemical potential but also from some region above.24 For
T=300 K the MDC width can be measured up to 50 meV
aboveEF, and, within the experimental uncertainty, it has
appeared to be completely symmetricse.g., see Ref. 15d. This
means that if there is some asymmetry in the scattering rate
at low-energy scales,0.1 eV, a characteristic scale which
can originate from an electron-boson interaction or from the
van Hove singularity in the occupied density of states of the
hole-doped cupratesd, its magnitude is too small to be seen in
the uvu,50 meV energy range and, consequently, hardly ef-
fects the quasiparticle renormalization in the occupied region

sv,0d. Figure 9 illustrates this: the dashed curves, on top of
the symmetric self-energy shown by shaded areas, represent
a low-energy asymmetric contribution which is too big not to
be noticed inS9svd sfor uvu,50 meVd but too small to in-
fluenceS8sv,0d.

The solid curves in Fig. 9 present the case of high-energy
asymmetry that can steam from the asymmetry of the bare
band.9 We simulate it by an asymmetry part in the scattering
rate

Sa9svd = HSmod9 sv,vc2d − Smod9 sv,vcd, v . 0,

0, v , 0,
J

sA14d

whereSmod9 is determined by Eq.sA10d with vc=0.45 eV,
vc2=0.66 eV,n=4, C=0. It is seen that although the influ-
ence ofSa8svd on renormalization at −0.5 eV,v,0 eV is
rather smallscan be approximated at this stage by a linear
contribution with a slope of about 20% ofld it can be, in
principle, detected by more precise analysis, in which the
influence of the energy and angular resolutions is taken into
account explicitly.
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