Pseudogap and electronic ordering in 2D superconductors: ARPES approach

Alexander Kordyuk Institute of Metal Physics TN Kyiv, Ukraine **T*** www.imp.kiev.ua/~kord SDW T_r T_c CDW **AFM** SC SC

electron doping

Low Temp. Phys. (2015)

hole doping

Outline

- 1. Pseudogap history
- 2. Pseudogap in cuprates and TDM
- 3. Pseudogap in Fe-SC?
- 4. Band structure of Fe-SC and superconductivity
- 5. Pseudogap and superconductivity

Conclusion:

What is similar between Fe-SC and Cu-SC with maximal Tc? – proximity to Lifshitz transition

Low Temp. Phys. (2015)

Pseudogap history

The term "pseudogap" had been coined by Mott back in 1968 as a depletion of the electronic density of states at the Fermi level

N. F. Mott, Rev. Mod. Phys. 40, 677 (1968)

'Fluctuating band gap', the gap formed by uctuating CDW at a Peierls transition in quasi-1D metals M. J. Rice & S. Strassler, *Solid State Commun.* **13**,1389 (1973)

Pseudogap in experiment

(a,b) K. Ishida et al., Phys. Rev. B 58, R5960 (1998); (c) J. W. Loram et al., Physica C 235-240, Part 3, 1735 (1994); (e,f) J. L. Tallon et al., Phys. Status Solidi (b) 215, 531 (1999).

Pseudogap in experiment

(a) J. Wilson, F. Di Salvo, and S. Mahajan, Adv. Phys. 24,117 (1975) (b-f) Y. Ando et al., Phys. Rev. Lett. 93, 267001 (2004).

Pseudogap in theories

Charge carriers concentration

(a) the preformed pairs scenarios or spin singlet scenario(b) quantum critical point (QCP)(c) competition between superconductivity and another ordering

"Two gaps" scenario

J. Tallon and G. Williams, PRL (1999); R. Markiewicz, PRL (2002).

M. Le Tacon et al., Nat. Phys. (2006).

2. Pseudogap in cuprates and TMD

- 1. Measuring gaps in ARPES
- 2. Two gaps in Cu-SC
- 3. CDW gaps in TMD
- 4. CDW in cuprates
- 5. VHs nesting and Mott gap in TMD
- 6. Three gaps in Cu-SC

Conclusion: SDW+CDW+SC fluctuations

7. Two sides of the phase diagram

Pseudogap in cuprates by ARPES

(a) A. G. Loeser et al., Science 273, 325 (1996); (b) D. Marshall et al., Phys. Rev. Lett. 76, 4841 (1996); (c,d) M. R. Norman et al., Nature 392, 157 (1998); (e,f) A. Kaminski et al., Phys. Rev. B 71, 014517 (2005).

Pseudogap in cuprates by ARPES

BSCCO

(a-c) J. Campuzano et al., Phys. Rev. Lett. 83, 3709 (1999);

(d,e) K. Tanaka et al., Science 314, 1910 (2006)..

Two gaps by ARPES

T. Kondo et al., Nature 457, 296 (2009)

Pseudogap in TMD

Borisenko PRL 2008 Evtushinsky PRL 2008

Pseudogap in TMD

Temperature (K)

Borisenko PRL 2008

Pseudogap in cuprates Bi(Pb)-2212 UD 77K

Kordyuk PRB (2009)

Pseudogap in cuprates Bi(Pb)-2212 UD 77K

Kordyuk PRB (2009)

PG in cuprates = **PG** in **TMD**

Kordyuk PRB (2009)

Pseudogap in cuprates

Temperature evolution of the hot spot EDC for underdoped BSCCO (Tc = 77 K).

T* - the pseudogap starts to increase rapidly, the spectral weight starts to decrease;

Tp - the spectral weight starts to increase;

Tc - the superconducting gap opens, the spectral weight continues to increase up to T_{sc} . The examples of non-normalized EDC's at 160 K, 120 K, and 30 K (right) illustrate the spectral weight evolution.

Pb–Bi2201 *T*c = 34 K, *T** = 125 K

M. Hashimoto et al. *Nat. Phys.* **6**, 414 (2010)

(0,π**) SDW**

M. Hashimoto et al. *Nat. Phys.* **6**, 414 (2010)

Pseudogap in hole-doped cuprates

SDW in electron-doped cuprates

electron doping

H. Matsui et al., *PRL* **94**, 047005 (2005) S. R. Park et al., *PRB* **75**, 060501 (2007)

SDW and superconductivity

electron doping

hole doping

Pseudogap in cuprates

There are at least three mechanisms that form the pseudogap in the hole doped cuprates:

- 1 the preformed pairing;
- 2 the incommensurate CDW due to nesting of the straight parallel Fermi surface sections around (π,0) and (0,π);
- **3 SDW** which is **dominant** constituent of the pseudogap assosiated with *T** and is either causing or caused by the Mott localization.

These phases occupy different parts of the phase diagram and gap different parts of the Fermi surface competing for it.

Iron-based superconductors (FeSC)

Cu-SC vs Fe-SC

Cu-SC vs Fe-SC

	Cu-SC	Fe-SC
band structure	simple (1 band, split)	complex (5 bands)
renormalization	k-dependent	band dependent
1+λ (ω cutoff)	k-dependent 2 (0.5 eV)	>4 (50 meV) 3 (1.5 eV)
SC gap	k-dependent	band dependent
pseudogap	k-dependent	no?
main interaction	SF	(phonons + SF) *multi-bands

Iron-based superconductors: electronic structure

Fermi surface of BKFA

Intraband Cooper pairing further enhanced by G₂

Tesanovic Physics 2009

Ding EPL 2008

Shimojima Science 2011

ZX/YZ

-X2-Y2 3Z2-R2

 $Ba_{0.6}K_{0.4}Fe_2As_2$

Hu & Ding arXiv:1107.1334

V. Zabolotnyy Nature 2009

0.1

0.0

-0.1

-0.2

-0.3

X

Borisenko PRL 2010

Kordyuk PRB 2011

FS's of iron-based superconductors

1111 PrFeAsO_{0.7}

42K

111

11 Fe(Se,Te)

14K

42622 Sr₄V₂O₆Fe₂As₂

D. Evtushinsky 2011

FS's of iron-based superconductors

122

BFA: density of states

"Topological" superconductivity **Small Fermi surfaces** vicinity to Lifshitz transition vicinity to 2D-3D crossover

FeSC: electronic structure and superconductivity

BKFA: Fermi surface and gaps

 Δ correlates with the orbital composition: $\Delta = 3-4$ meV for 3dxy and 3dz2 $\Delta = 10.5$ meV for 3dxz/yz.

D. Evtushinsky PRB 2009, NJP 2009

D. Evtushinsky PRB 2014

A-FeSe $Rb_{0.77}Fe_{1.61}Se_2$ T_c = 32.6 K

S. V. Borisenko arXiv:1204.1316 – PRB 2013

33K $Ca_{1-x}Na_xFe_2As_2$

D. V. Evtushinsky arXiv:1211.4593

S.Thirupathaiah arXiv:1307.1608

- The band structure of Fe-SC is well captured by LDA but do not take it too literally. The calculated Fermi surface is usually bad starting point for theory.
- Main contributors to SC are dxz,yz electrons and Tc for different compounds seems to correlate with the position of the Van Hove singuliarities (Lifshitz transitions) for the xzand yz-bands.

"Topological" superconductivity in Fe-SC

A. A. Kordyuk, J. Supercond. Nov. Magn. (2013); Low Temp. Phys. (2012)

"Topological" superconductivity in Cu-SC

A. A. Kordyuk Low Temp. Phys. (2015)