© 2017 ІМФ (Інститут металофізики ім. Г. В. Курдюмова НАН України) Надруковано в Україні. Фотокопіювання дозволено тільки відповідно до ліцензії

PACS numbers: 68.37.Hk, 72.40.+w, 78.20.-e, 78.67.Pt, 81.20.Fw, 82.80.Ej, 84.60.Jt

Гетероструктури *n*-ZnO:Al/porous-CdTe/*p*-CdTe в якості фотоелектричних перетворювачів

А. Ф. Дяденчук, В. В. Кідалов

Бердянський державний педагогічний університет, вул. Шмідта, 4, 71100 Бердянськ, Запорізька обл., Україна

У роботі одержано плівки ZnO:Al на поруватих напівпровідникових підкладинках CdTe методою золь-ґель із наступним центрифуґуванням. Одержані структури n-ZnO:Al/porous-CdTe/p-CdTe та безпосередньо плівки досліджувалися за допомогою сканувальної електронної мікроскопії та рентґенівської дифракції. За допомогою рентґеноспектральної мікроаналізи було визначено хемічний склад і проведено фазову аналізу одержаних гетероструктур. Розглянуто можливість застосування гетероструктур n-ZnO:Al/porous-CdTe/p-CdTe в якості фотоелектричних перетворювачів сонячної енергії.

The ZnO:Al film on porous semiconductor CdTe substrates is obtained by sol-gel processing followed by centrifugation. The obtained structures of the *n*-ZnO:Al/porous-CdTe/*p*-CdTe films are investigated using scanning electron microscopy and x-ray diffraction. Using x-ray microanalysis, a chemical composition is determined, and a phase analysis of obtained heterostructures is carried out. The application possibility for the *n*-ZnO:Al/porous-CdTe/*p*-CdTe heterostructures as solar-energy photovoltaic cells is considered.

В работе получены плёнки ZnO:Al на пористых полупроводниковых подложках CdTe методом золь-гель с последующим центрифугированием. Полученные структуры *n*-ZnO:Al/porous-CdTe/*p*-CdTe и непосредственно плёнки исследовались с помощью сканирующей электронной микроскопии и рентгеновской дифракции. С помощью рентгеноспектрального микроанализа были определены химический состав и проведён фазовый анализ полученных гетероструктур. Рассмотрена возможность применения гетероструктур *n*-ZnO:Al/porous-CdTe/*p*-CdTe в качестве фотоэлектрических преобразователей солнечной энергии.

Ключові слова: плівки ZnO, поруваті підкладинки CdTe, метода золь-

487

ґель, центрифуґування, фотоелектричні перетворювачі.

Key words: ZnO film, porous CdTe substrate, sol-gel method, centrifugation, photovoltaic cells.

Ключевые слова: плёнки ZnO, пористые подложки CdTe, метод зольгель, центрифугирование, фотоэлектрические преобразователи.

(Отримано 27 квітня 2017 р.)

1. ВСТУП

Останнім часом при виготовленні фотоперетворювачів використовують поруваті напівпровідники. В роботах [1-3] показано можливість одержання поруватої поверхні напівпровідників методою електрохемічного щавлення як з'єднань групи A_3B_5 , так і A_2B_6 .

Збільшення значення ККД сонячних елементів можливе за допомогою нанесення на поверхню поруватого напівпровідника просвітлюючи оптичних покриттів. Так у нашій роботі [4] було розглянуто структури ZnO/porous-Si/Si та SnO₂/porous-Si/Si. Широке застосування при виготовленні сонячних елементів знаходять плівки ZnO [5, 6].

Метою цієї роботи є розробка технології одержання плівок ZnO методом золь-ґель із наступним центрифуґуванням на поверхні por-CdTe, а також розглядається можливість використання гетероструктури *n*-ZnO:Al/porous-CdTe/*p*-CdTe в якості фотоелектричних перетворювачів сонячної енергії.

2. МЕТОДИКА ЕКСПЕРИМЕНТУ

2.1. Одержання поруватого телуриду кадмію

В якості підкладинки для вирощування плівки ZnO використовувалися пластини поруватого телуриду кадмію виготовлені за стандартною технологією методом електрохемічного щавлення. Для експериментів використовувалися зразки CdTe *p*-типу провідности площею $0,5 \text{ сm}^2$ і товщиною 1,5-2 мм, вирощені Бріджменовою методою з орієнтацією поверхні (100).

2.2. Одержання плівки ZnO:Al

Плівкоутворювальний розчин було виготовлено наступним чином. Розчин 0,3 M ацетату цинку $Zn(CH_3COO)_2 \cdot 12H_2O$ заливали абсолютним ізопропіловим спиртом (C_3H_8O), деметилформамідом (CH_3)₂NCH, 2-метоксиетанолом $C_3H_8O_2$ і перемішували. Щоб змістити положення максимуму фоточутливости в область більших енергій, в процесі осадження плівки ZnO леґували Al (зсув Бурштейна–Мосса) [7]. В якості леґувального реактиву використовувався хлорид алюмінію $AlCl_3 \cdot 6H_2O$. Потім розчин поміщався в ультразвукову ванну. Одержану суміш перемішували протягом 30 хвилин. Для дозрівання розчину його витримували при кімнатній температурі (22 ± 2)°C 2–3 дні.

З метою прискорення процесу розділу фаз розчин було осаджено на поруваті підкладинки CdTe методою центрифуґування (spin-coating) покриття (3000 обертів на хвилину, 30 секунд).

Після нанесення золю на поверхню пластин вони поміщалися в піч, де були нагріті протягом 10 хвилин покроково з інтервалом 20°С до температури 350°С. Процес нанесення і сушка повторювалися до одержання необхідної товщини. На останній стадії підкладинки поміщали у піч і нагрівали покроково з інтервалом 20°С до 550°С.

Процес повторювався 10 разів після того, як кожна плівка охолоджувалась до кімнатної температури. Потім ці плівки відпалювали у вакуумі. Багаторазове нанесення шарів оксиду цинку дозволяє залікувати тріщини на нижніх шарах і уникати несуцільности плівки.

Виведення залишків розчину з поверхні відбувався в процесі сушіння, який супроводжувався значною усадкою й ущільненням плівки.

2.3. Виготовлення сонячних фотоелементів

У результаті осадження плівок ZnO на поруваті підкладинки телуриду кадмію були виготовлені сонячні фотоелементи. Такий сонячний елемент являє собою гетероструктуру *n*-ZnO:Al/porous-CdTe/*p*-CdTe.

Верхній контакт до плівки ZnO:Al створювався методом вакуумного термічного напорошення алюмінію через маску. Напорошення відбувалося при температурі підкладинки 200°С.

Омічні контакти до плівки *n*-ZnO:Al та підкладинки porous-CdTe(100) були виготовлені з використанням провідної срібної пасти.

У результаті проведених досліджень вивчено характеристики сонячних елементів і визначено їх ефективність.

2.4. Методи дослідження

Одержані структури *n*-ZnO:Al/porous-CdTe/*p*-CdTe та безпосередньо плівки охарактеризовано за допомогою сканувальної електронної мікроскопії та рентґенівської дифракції. Морфологія та поперечний переріз досліджувалися за допомогою сканувального електронного мікроскопа JSM-6490 з розріжненням у ×60000. За допомогою рентґеноспектральної мікроаналізи було визначено хемічний склад. Фазова аналіза одержаних гетероструктур визначалася за допомогою рентґенівської установки ДРОН-3М.

3. РЕЗУЛЬТАТИ ТА ОБГОВОРЕННЯ

3.1. Морфологія поруватого CdTe

На рисунку 1 наведено СЕМ-мікрофотографію поперечного перерізу поруватого CdTe, одержану за допомогою сканувального електронного мікроскопа JSM-6490. Діяметер пор варіює в межах 0,2-2 мкм.

Рис. 1. СЕМ-зображення поперечного перерізу porous-CdTe.¹

Рис. 2. СЕМ-мікрофотографія поверхні плівки ZnO:Al.²

490

3.2. Морфологія та хемічний склад плівок ZnO:Al

Напівпровідникові підкладинки CdTe після процесу центрифуґування по всій робочій поверхні були покриті суцільною плівкою матового, білого кольору. Одержані плівки характеризуються високою адгезією до підкладинок і не відшаровуються при нагріванні вище 550°С. На рисунку 2 наведено СЕМ-мікрофотографію поверхні плівки ZnO:Al.

Товщина утворених плівок склала за порядком 1 мкм.

Плівкоутворювальний розчин проникає в пори за рахунок капілярного ефекту. Пори в підкладинці CdTe(100) заповнені оксидом цинку.

З проведених експериментів видно, що ріст суцільної плівки стає можливим, якщо на початку епітаксії має місце заростання як мілкого рельєфу, так і глибоких вхідних отворів пор. Ріст шару ZnO:Al на підкладинці поруватого CdTe починається в порах і, отже, створює об'ємний контакт і закінчується з ростом у просторовому режимі.

На рисунку 3 дані демонструють наявність атомів Zn, O в одержаних плівках. Присутні й елементи леґувальної домішки Al та елементи підкладинки Cd і Te. Окрім основних сполук на поверхні присутні й інші хемічні елементи в незначній кількості. Джерелом Карбону та Нітроґену можуть бути проміжні сполуки, які виникають в ході хемічної реакції при виготовленні золю.

Дослідження елементного складу плівок ZnO:Al показує, що вміст Al в цих шарах складає в середньому 2,4% (табл. 1).

Рис. 3. Дослідження хемічного складу плівок за допомогою методи енергодисперсійної рентґенівської спектроскопії.³

ТАБЛИЦЯ 1. Елементний склад плівки ZnO:Al.⁴

0	Al	Zn	Cd	Те
40,52	2,42	40,48	8,23	8,35

3.3. Дифрактометричні дослідження

Фазова аналіза одержаних гетероструктур ZnO:Al/porous-CdTe/p-CdTe визначалася за допомогою рентґенівської установки ДРOH-ЗМ (Сu K_{α} -випромінення, $\lambda = 1,5405$ Å) з графітовим монохроматором у діяпазоні $2\theta = 10-70^{\circ}$. Результати досліджень дали можливість провести ідентифікацію кристалічних фаз.

Рентґенографічні дослідження кристалічної структури шарів показали, що вони мають полікристалічну природу с гексагональною ґратницею типу вюрцита. Кутове положення піків добре узгоджується з табличними JCPDS (Joint Committee on Powder Diffraction Standards) ZnO-даними для номінально чистого оксиду цинку.

На рентґенограмах при куті дифракції $2\theta = 34,37^{\circ}$ спостерігається інтенсивний дифракційний пік, що відповідає площині (002)ZnO.

При цьому сторонні фази, такі як Al, Al_2O_3 , у плівках не виявлено. Це свідчить про те, що йони Алюмінію не порушують гексагональну структуру вюрциту ZnO.

За результатами досліджень розраховано текстурний параметер *TC*(*hkl*) за допомогою виразу [6]:

$$TC(hkl) = \left[\frac{I(hkl)}{I^{*}(hkl)}\right] / \left[\sum_{n} \frac{I(hkl)}{I^{*}(hkl)}\right],$$

де *I(hkl)* та *I*^{*}(*hkl*) — експериментальні інтенсивності рентґенівської дифракції (*hkl*)-орієнтації та інтенсивності, одержані за даними таблиць JCPDS, відповідно; *n* — кількість дифракційних піків.

З розрахунків випливає, що більше значення текстурного параметра має площина (002). Отже, плівки мають переважно структуру з (002)-орієнтацією.

Рис. 4. Рентґенівська дифракція тонких плівок ZnO:Al.⁵

492

NG		Гетероструктура		
ј№ п/п	Параметер	porous-CdTe/	n-ZnO:Al/	
11/11		/p-CdTe	/porous-CdTe/p-CdTe	
1	Напруга холостого ходу $U_{\scriptscriptstyle XX}$, мВ	570	780	
2	Густина струму короткого замикання $J_{\rm K3},{\rm mA/cm^2}$	5,4	6,3	
3	Коефіцієнт заповнення вольт- амперної характеристики FF	0,49	0,52	
4	ККД, %	15,01	25,5	

ТАБЛИЦЯ 2. Результати дослідних випробувань гетероструктур porous-CdTe/*p*-CdTe та *n*-ZnO:Al/porous-CdTe/*p*-CdTe.⁶

Таким чином, рентґенівські дифрактометричні дослідження структури і фазовий склад електроосаджених шарів оксиду цинку виявили, що всі дифракційні піки, за винятком тих, що відносяться до підкладинок porous-CdTe, відповідають гексагональній модифікації ZnO типу вюрцит.

3.4. Вольт-амперна характеристика гетероструктури *n*-ZnO:Al/porous-CdTe/*p*-CdTe

Вимірювання світлових вольт-амперних характеристик одержаних гетероструктур *n*-ZnO:Al/porous-CdTe/*p*-CdTe здійснювалося в режимі освітлення AM 1,5 за кімнатної температури.

Міряння здійснювалося для двох випадків: 1) сонячний елемент на основі поруватого телуриду кадмію porous-CdTe/*p*-CdTe; 2) сонячний елемент на основі гетероструктури *n*-ZnO:Al/porous-CdTe/*p*-CdTe.

Мірялася напруга холостого ходу U_{XX} , густина струму короткого замикання J_{K3} і коефіцієнт заповнення вольт-амперної характеристики ФЕП FF. Результати проведених досліджень наведено в табл. 2.

З дослідних результатів помітно, що при використанні плівки *n*-ZnO:Al на поверхні поруватого CdTe параметри CE поліпшуються, збільшуються напруга холостого ходу та струм короткого замикання, фактор заповнення також дещо зростає до FF = 0,52. Таким чином, досягнуто збільшення ККД до 25,5%.

4. ВИСНОВКИ

Таким чином, у роботі методою золь-ґель з наступним центрифуґуванням виготовлено плівку ZnO:Al. В якості підкладинки використано поруватий CdTe, одержаний методою електрохемічного щавлення. Товщина плівки ZnO склала 1 мкм.

Одержані плівки досліджено за допомогою сканувальної електронної мікроскопії та рентґеноспектральної мікроаналізи.

Встановлено, що плівки ZnO є полікристалічними і кристалізуються у гексагональній структурі з переважною орієнтацією в напрямку (002).

Вивчено вольт-амперну характеристику гетероструктури *n*-ZnO:Al/porous-CdTe/*p*-CdTe. Встановлено, що значення ККД сонячних елементів виготовлених на даних структурах перевищує на 5,4% значення ККД для аналогічних структур ZnO:Al/CdTe при однакових умовах одержання прозорої провідної плівки *n*типу ZnO.

ЦИТОВАНА ЛІТЕРАТУРА-REFERENCES

- 1. A. F. Dyadenchuk and V. V. Kidalov, J. Nano- Electron. Phys., 6, No. 4: 04043 (2014) (in Ukrainian).
- 2. A. F. Dyadenchuk and V. V. Kidalov, J. Nano- Electron. Phys., 5, No. 3: 03033 (2013) (in Russian).
- 3. S. L. Khrypko, V. V. Kidalov, and E. V. Kolominska, J. Nano- Electron. Phys., 7, No. 1: 01003 (2015) (in Russian).
- 4. V. V. Kidalov and S. L. Khrypko, J. Nano- Electron. Phys., 8, No. 4 (2): 04071 (2016) (in Russian).
- 5. S. L. Khrypko, *Nanosistemi*, *Nanomateriali*, *Nanotehnologii*, 7, No. 3: 833 (2009) (in Ukrainian).
- S. L. Khrypko and G. K. Zholudev, Uchyonyye Zapiski Tavricheskogo Natsionalnogo Universiteta im. V. I. Vernadskogo. Seriya 'Fizika', 21 (60), No. 1: 139 (2008) (in Ukrainian).
- 7. M. Suchea, S. Christoulakis, N. Katsarakis, T. Kitsopoulos, and G. Kiriakidis, *Thin Solid Films*, **515**, No. 16: 6562 (2007).

Berdiansk State Pedagogical University,

4, Schmidt Str.,

71100 Berdiansk, Zaporizhia Oblast, Ukraine

¹ Fig. 1. SAM-image of the porous-CdTe cleavage cross-section.

² Fig. 2. SAM-image of the ZnO:Al film surface.

³ Fig. 3. Investigation of the chemical composition of films by the energy-dispersive x-ray spectroscopy method. ⁴ TABLE 1 The elemental composition of the $T_{\rm eff}$ (1)

⁴ **TABLE 1.** The elemental composition of the ZnO:Al film.

⁵ Fig. 4. X-ray diffraction of thin ZnO:Al films.

 $^{^6}$ TABLE 2. The results of research trials of the porous-CdTe/p-CdTe and n-ZnO:Al/porous-CdTe/p-CdTe heterostructures.