АТОМНА БУДОВА МЕТАЛІВ І МЕТАЛОВМІСНИХ ГЕТЕРОФАЗНИХ СТРУКТУР

Генерація високого гідростатичного тиску за рахунок енергії агрегатного перетворення робочого тіла на основі легкоплавких вуглеводнів

Тпл,°С ∆V, % Р, атм

В.Ю. Данільченко, Є.М. Дзевін, В.Й. Бондар

Малогабаритний пристрій: 35 кг, 0.2 кВт

Первинний тиск робочої камери до 1500 атм (150 МПа)

Можливість підвищення з механічним мультиплікатором до 15000 атм (1500 МПа)

Можливість варіювати Тпл робочого середовища, об'ємний ефект перетворення і тиск в робочі камері за рахунок вмісту розчинника

Питомі втрати в осерді Р_{В/50}

для М-сплавів Fe–B–Si–P–Cu та ММ-11Н сплаву (типу FINEMET)

Стрічкові нанокристалічні магнітопроводи із сплавів М-4 (Fe_{80,78}B_{9,85}Si_{1,48}P_{6,9}Cu_{0,99}) і М-5-1 (Fe_{83,5}B_{7,5}Si_{0,5}P_{7,5}Cu₁) завдяки оптимальному співвідношенню між густиною та розмірами нанокристалів характеризуються щонайменше в 4 рази нижчими втратами ніж стальні при робочій індукції 1 Т, що є кращим результатом ніж отриманий (~3 рази) зарубіжними авторами.

Носенко В.К., Міка Т.М., Євлаш І.К.

Високотверді покриття, отримані в результаті плазмового напилення аморфного порошку

Носенко В.К., Нізамєєв М.С., Семірга О.М.

РОЗРОБКА ТЕХНОЛОГІЇ НАНЕСЕННЯ ДИФУЗІЙНОГО БАР'ЄРУ З МІДІ НА ВУГЛЕЦЕВІ НАНОТРУБКИ (ВНТ) ДЛЯ СТВОРЕННЯ ЗАХИСНИХ КОМПОЗИЦІЙНИХ ПОКРИТТІВ

Головна ідея роботи: Для створення композиційних покриттів, зміцнених ВНТ, необхідно запобігти міжфазній взаємодії їх поверхні з металевою матрицею композиту.

До напилення

Кількість ВНТ,

Після напилення

Панарін В.Є., Свавільний М.Є., Хомініч А.І.

Термомеханічна обробка складнолегованих евтектичних (α-Al+Mg₂Si) сплавів з високим рівнем рідкоплинності

Властивості нових ливарних (α -Al+Mg₂Si) сплавів після деформації та термічної обробки (σ_B =556-575 МПа, δ =8,4-6.3 %) знаходяться на рівні промислових високоміцних деформованих сплавів системи Al–Zn–Mg–Cu (B95). Механічні властивості промислових ливарних і здеформованих сплавів та нових ливарних (α-Al+Mg₂Si) сплавів:

I — силуміни; II — сучасні високоміцні сплави з низькими ливарними властивостями;

III — деформований В95;

IV- нові ливарні високоміцні (α-Al+Mg₂Si) сплави. Синім позначено сплав після екструзії.

Отриманий результат демонструє перспективу створення універсального сплаву, з якого можна виготовляти деталі, як методом лиття, так і деформацією.

Легка Т.М.

Робота виконана у співдружності з ІПМ НАНУ

Конденсати високоентропійних сплавів, отримані за технологією EB-PVD

Рис. 1. Дифрактограми вихідного сплаву та конденсатів FeNiCoCrCu, осаджених при різних температурах підкладинки.

Рис. 2. Дифрактограми фольги FeNiCoCrCu, відпаленої при разніх температурах.

Модуль Юнга, мікротвердість та коефіцієнт пластичності для AlFeNiCoCrCu та FeNiCoCrCu конденсатів, осаджених при різних температурах.

FeNiCoCrCu				FeNiCoCrCu+Al			
T _s , K	E, GPa	H _v , GPa	δ_{Λ}	T _s , K	E, GPa	H _v , GPa	δ_{Λ}
1020	205	5,2	0,87	1010	175	6,1	0,83
1070	230	-	-	-	-	-	-
1120	210	3,4	0,94	1150	215	5,3	0,84

Практичний аспект досліджень: встановлення закономірності формування структури в тонких фольгах із сплавів системи Al-Cu-Fe-Ni-Co-Cr-Me при фізичному осадженні з парової фази для створення на їх основі легких теплозахисних стільникових панелей.

Поліщук С.С., Скородзієвський В.С.

у співпраці з ІЕЗ НАН України

МП у багатокомпонентних B2* інтерметалідах CoNiCuAlGaIn

Показано утворення В2 ґратки з викривленнями, що спричиняють багатократне зміцнення. Цілеспрямовано отримано мартенситне перетворення. Разом із попереднім випадком TiZrHfCoNiCu, результати отримані на CoNiCuAlGaIn свідчать про загальну фізичну закономірність при структуроутворенні в багатокомпонентних B2 сполуках

Г.С. Фірстов, Т.О. Косорукова, член-кор. НАН України Ю.М. Коваль

ФІЗИКА МІЦНОСТІ ТА ПЛАСТИЧНОСТІ МЕТАЛІВ І СПЛАВІВ

СТВОРЕННЯ В ВИСОКОЕНТРОПІЙНИХ СПЛАВАХ СИСТЕМИ AICuCrCoNiFe СУБМІКРО- ТА НАНОКРИСТАЛІЧНИХ СТРУКТУР ВИСОКОКОНЦЕНТРОВАНИМИ ДЖЕРЕЛАМИ ЕНЕРГІЇ ТА ДОСЛІДЖЕННЯ ЇХ ВПЛИВУ НА ФІЗИЧНІ І МЕХАНІЧНІ ВЛАСТИВОСТІ

Мазанко В.Ф., Богданов С.Є., Ворона С.П.

Залежність коефіцієнту дифузії ⁶³Ni *D* у сплаві AIFeNiCoCuCr від оберненої температури *1/T*

Параметри дифузії радіоактивних ізотопів в різних сплавах								
Характеристика	Сплав							
	Al FeNiCoCuCr	CoCrFeMnNi [7]	Ni–Co [10]					
$D_0 (M^{2//c})$	4,93.10-6	6,2.10-4	5,3.10-4					
Q (кДж/моль)	Q (кДж/моль) 232,1		321,4					

Конструкційні резерви міцності В_г та К_{тв} (конструкційні сталі (КС) і титанові сплави (КТС))

σ

Резерви міцності: $B_r = S_K / \sigma_{0,2}$ – деформаційна стійкість (зламостійкість) металу при перевантаженні вище о_{0,2} в умовах лінійного НДС. В_г є кількісним показником конструкційної придатності металу для даного виробу.

 $K_{ms} = R_X/\sigma_2$ – механічна стабільність металу – резерв міцності за допустимим підвищенням міцності σ₂ даного металу [1].

ПТ – перспективні технології.

Мешков Ю.Я., Котречко С.А., Шиян А.В. Механическая стабильность металлов и сплавов. - Киев: Наук. думка, 2014. - 278 с.

член-кор. НАН України Ю.Я. Мєшков, А.В. Шиян

Вплив неоднорідності мікроструктури на величину локального напруження руйнування

Розроблено фізичні уявлення щодо впливу неоднорідності зеренної структури на рівень локального напруження о_f крихкого руйнування заліза і конструкційних сталей в умовах концентрації напружень.

Зменшення неоднорідності зеренної структури обумовлює збільшення σ_f . Цей ефект зростає при переході до дрібнозернистих структур, які притаманні високоміцним конструкційним сталям. Основний вклад в цей ефект дає зростання рівня порогового напруження ініціювання сколу при зменшенні розкиду розмірів зерен. Це напруження, з точністю до коефіцієнта 0,8-0,9 дорівнює значенню крихкої міцності R_{MC} сталі.

Отримані результати дозволяють віднайти резерви подальшого підвищення конструкційної міцності сталей та обґрунтувати технологічні шляхи реалізації цих резервів.

С.О. Котречко, Ю.Я. Мєшков, О.В. Зацарна, Н.М. Стеценко , Г.П. Зіміна

Рис. Залежність локального напруження сколу σ_f в околі кільцевого надрізу радіусом 0.25 мм від найбільш імовірного розміру дійсного зерна d_{mpv} та дисперсії логарифму розмірів зерен D_{lnd} : • – сталь З0ХГСА; • – сталь 40Х; • – технічно чисте залізо;

суцільні лінії - результати моделювання.

Кінетика втрати стабільності і розриву контактного зв'язку в карбін-графеновому наноелементі

Встановлено існування забороненої ЗОНИ ДЛЯ рівноважних станів атомів (ES band gap), ЩО E ключовою особливістю кінетики розриву зв'язку в карбінконтактного графеновому наноелементі.

ES band gap має визначальний вплив на ресурс карбінграфенових нанопристроїв.

Якщо величина діючої сили попадає в заборонену зону ($F \ge F_{R\,min}$) час функціонування наноелемента зменшується на кілька порядків.

А.М. Тимошевський, Ю.В. Матвійчук, С.О. Котречко

Залежність сили *F*, що діє у контактному зв'язку, від його довжини, *a*₀₁, та відповідні зміни довжин міжатомних зв'язків у середині карбінового ланцюжка.

Особливості поведінки легованих карбідів при аустенізації сталей 7ХНМФБ та Х6ВФ в умовах швидкісних нагрівань

Високолегований карбід сталі Х6ВФ після її гартування від температури 880 °C із швидкістю нагрівання 1000 °C / сек

> Такий же карбід після гартування від 980 ° С із швидкістю нагрівання V = 2,6 • 1000 ° С /сек)

Дисоціація легованого цементиту в аустеніті шляхом дифузії вуглецю через границю розділу в умовах

Волосевич П. Ю.

Використання УЗУО із бойком α-Fe для модифікації поверхневих шарів сплаву Д16

Поступове легування залізом поверхні сплаву Д16 за умов УЗУО на повітрі

Вузол навантаження (a), бойок з а-Fe (b), механізм легування (c)

Васильєв М.О., Мордюк Б.М.

Згідно даних РА (а) та РЕМ (б) обробка УЗУО бойком з армко-Fe на повітрі спричиняє формування окидних і легованих поверхневих шарів

Висока твердість і антикорозійні властивості обумовлені механохімічним окисненням і формуванням суцільних шарів алюмозалізних оксидів у процесі УЗУО (типу шпінелі FeAl₂O₄, AlFeO₃)

у співпраці з НТУУ КПІ

ВІДДІЛ ФІЗИЧНИХ ОСНОВ ЛЕГУВАННЯ СТАЛЕЙ ТА СПЛАВІВ

Дослідженням електронної структури (ab initio розхрахунки (1,2,3) та ЕПР дослідження(4,5)) і властивостей дислокацій в залізі і аустенітних сталях механічна спектроскопія (6,7) та механічні випробовування (8)) вперше доведено, що фізична природа крихкого руйнування полягає у локалізованому підвищенні густини електронних станів на рівні Фермі і відповідному збільшенні концентрації вільних електронів. Отримані результати дозволяють пояснити вражаючу схожість явищ окрихчення сарфактантами і воднем.

Гаврілюк В.Г., Теус С.М.